1 Integration by Substitution
1.1 Solution 1
\(\int \sin(x^2 + 3) 2x \mathrm{d}x\)
We will use substitution
\(u = x^2 + 3\)
\(\mathrm{d}u = 2x \mathrm{d}x\)
This leads to the solution:
\(\int \sin u \mathrm{d}u\)
\(= -\cos u + C\)
\(= -\cos (x^2 + 3) + c\)
1.2 Solution 2
\(\int x^2 \sqrt[4]{x^3 - 2} \mathrm{d}x\)
We will use substitution
\(u = x^3 - 2\)
\(\mathrm{d}u = 3x^2 \mathrm{d}x\), \(\dfrac{\mathrm{d}u}{3} = x^2 \mathrm{d}x\)
This leads to the solution:
\(\int \sqrt[4]{u} \dfrac{1}{2} \mathrm{d}u\)
(1/4) + 1
5/4
\(= \dfrac{u^{5/4}}{5/2} + C\)
\(= \dfrac{2*(u)^{5/4}}{5} + C\)
\(= \dfrac{2*(x^3 - 2)^{5/4}}{5} + C\)
1.3 Solution 3
\(\int x^2 (\cos x^3) \mathrm{d}x\)
We will use substitution
\(u = x^3\)
\(\mathrm{d}u = 3x^2 \mathrm{d}x\)
\(\dfrac{\mathrm{d}u}{3} = x^2 \mathrm{d}x\)
This leads to the solution:
\(\int \dfrac{\cos u}{3} \mathrm{d}u\)
\(= \dfrac{\sin u}{3} + C\)
\(= \dfrac{\sin (x^3)}{3} + C\)
1.4 Solution 4
\(\int \sin x \cos^3 x \mathrm{d}x\)
We will use substitution
\(u = \cos x\)
\(\mathrm{d}u = -\sin x \mathrm{d}x\)
\(-\mathrm{d}u = \sin x \mathrm{d}x\)
This leads to the solution:
\(\int -u^3 \mathrm{d}u\)
\(= \dfrac{-u^4}{4} + C\)
\(= \dfrac{-(\cos x)^4}{4}\)
1.5 Solution 5
\(\int x^2 \sin (x^3) \cos^3 (x^3) \mathrm{d}x\)
We will use substitution
\(u = x^3\)
\(\mathrm{d}u = 3x^2 \mathrm{d}x\)
\(\dfrac{\mathrm{d}u}{3} = x^2 \mathrm{d}x\)
This leads to the solution:
\(\int \sin u \cos^3 u \dfrac{1}{3} \mathrm{d}u\)
We know from solution 4, that the solution is
\(= -\dfrac{\cos^4 u}{12} + C\)
\(= -\dfrac{\cos^4 (x^3)}{12} + C\)
1.6 Solution 6
\(\int \dfrac{x \mathrm{d}x}{(x+1)^3}\)
We will use substitution
Let \(u = x + 1\)
\(\mathrm{d}u = \mathrm{d}x\)
This leads to the solution:
\(\int \dfrac{u-1}{u^3} \mathrm{d}u\)
\(= \int 1 - \dfrac{1}{u} \mathrm{d}u\)
\(= u - \dfrac{u^{-3+1}}{-2} + C\)
\(= u - \dfrac{1}{-2u^{2}} + C\)
\(= x + 1 - \dfrac{1}{-2(x+1)^{2}} + C\)
\(= x + 1 - \dfrac{1}{-2(x+1)^2} + C\)
1.7 Solution 7
\(\int \dfrac{\mathrm{d}x}{\sqrt{x}(\sqrt{x} + 1)^4}\)
We will use substitution
Let \(u = \sqrt{x} + 1\)
\(\mathrm{d}u = \dfrac{-1}{2*\sqrt{x}} dx\)
\(\dfrac{-2*du}{1} = \dfrac{1}{\sqrt{x}} dx\)
This leads to the solution:
\(\int \dfrac{-2*du}{(u)^4}\)
\(= \dfrac{-2*u^{-3}}{-3} + C\)
\(= \dfrac{-2}{3(\sqrt{x} + 1)^3} + C\)
1.8 Solution 8
\(\int \dfrac{\sqrt{x} dx}{(\sqrt{x} + 1)^4}\)
We will use substitution
Let \(u = \sqrt{x}\)
diff(sqrt(x), x).expand()
1/2/sqrt(x)
\(du = \dfrac{1}{2*\sqrt{x}} dx\)
\(du = \dfrac{\sqrt{x}}{2*x} dx\)
\(\dfrac{du}{2x} = \sqrt{x} dx\)
This leads to the solution:
\(\int \dfrac{2x du}{(u + 1)^4}\)
\(= \int \dfrac{2u^2 du}{(u+1)^4}\)
\(= \int \dfrac{2u^2 du}{u^4(1 + 1/u)^4}\)
\(= \int \dfrac{2 du}{u^2(1+1/u)^4}\)
Let \(n = \dfrac{1}{u}\)
u = var('u') diff(1/u, u).expand()
-1/u^2
\(dn = -\dfrac{1}{u^2} du\)
\(-dn = dfrac{1}{u^2} du\)
\(= \int \dfrac{-dn}{(1 + n)^4}\)
\(= \int \dfrac{-1}{(1+n)^4} dn\)
Let \(k = 1 + n\)
\(dk = dn\)
\(= \int \dfrac{-1}{k^4} dk\)
\(= \dfrac{-k^{-3}}{-3}\)
\(= \dfrac{1}{3k^3}\)
\(= \dfrac{1}{3(1+n)^3}\)
\(= \dfrac{1}{3(1+(1/u))^3}\)
\(= \dfrac{1}{3(1+(1/\sqrt{x}))^3}\)
1.9 Solution 9
\(\int \sec^2 x \tan^2 x dx\)
We will use substitution
We know that \(\tan^2 x = \sec^2 x - 1\)
\(\int (\tan^2 x + 1)\tan^2 x dx\)
We know that
x = var('x') diff(tan(x), x)
tan(x)^2 + 1
Let \(u = \tan x\)
\(du = \tan^2 x + 1 dx\)
\(\int u^2 du\)
\(\dfrac{u^3}{3} + C\)
\(\dfrac{\tan^3 x}{3} + C\)
1.10 Solution 10
\(\int \sqrt{1 + \sin x} \cos x dx\)
We will use substitution
Let \(u = 1 + \sin x\)
\(du = \cos x dx\)
\(\int \sqrt{u} du\)
\(\dfrac{u^{3/2}}{3/2} + C\)
\(2 \dfrac{(1+\sin x)^(3/2)}{3} + C\)
1.11 Solution 11
\(\int_0^4 \dfrac{x dx}{\sqrt{x^2 + 9}}\)
Let's evaluate the indefinite integral.
We will use substitution
Let \(u = x^2 + 9\)
\(du = 2x dx\)
\(\dfrac{du}{2} = x dx\)
\(\int \dfrac{1}{2*\sqrt{u}} du\)
\(= \sqrt{u} + C\)
\(= \sqrt{x^2 + 9} + C\)
From theorem 5.4.3,
\(\int_0^4 \dfrac{x dx}{\sqrt{x^2 + 9}} = \sqrt{4^2 + 9} - \sqrt{4^2 + 9}\)
x = var('x') f = sqrt(x^2 + 9) f(4) - f(0)
2
1.12 Solution 12
\(\int_0^1 (x+1)(x^2 + 2x - 1)^4 dx\)
Let's evaluate the indefinite integral.
We will use substitution
Let \(u = x^2 + 2x - 1\)
\(du = 2x + 2 dx\)
\(\dfrac{du}{2} = (x+1) dx\)
\(\int \dfrac{u du}{2}\)
\(= \dfrac{u^2}{4} + C\)
\(= \dfrac{(x^2 + 2x - 1)^2}{4} + C\)
From theorem 5.4.3,
\(\int_0^1 (x+1)(x^2 + 2x - 1)^4 dx = \dfrac{(1^2 + 2 - 1)^2}{4} - \dfrac{(0^2 + 0 - 1)^2}{4}\)
x = var('x') f = ((x^2 + 2*x - 1)^2)/4 f(1) - f(0)
3/4
1.13 Solution 13
\(\int_0^{\pi/3} \sec^3 x \tan x dx\)
We know that:
x = var('x') diff(sec(x))
sec(x)*tan(x)
Let's evaluate the indefinite integral.
We will use substitution
Let \(u = \sec x\)
\(du = \sec x \tan x dx\)
\(\int u^2 du\)
\(= \dfrac{u^3}{3} + C\)
\(= \dfrac{(\sec x)^3}{3} + C\)
From theorem 5.4.3,
\(\int_0^{\pi/3} \sec^3 x \tan x dx = \dfrac{(\sec (\pi/3))^3}{3} - \dfrac{(\sec 0)^3}{3}\)
x = var('x') f = ((sec(x))^3)/3 f(pi/3) - f(0)
7/3
1.14 Solution 14
\(\int_{\pi^2}{4\pi^2} \dfrac{\cos (\sqrt{x}/4)}{\sqrt{x}} dx\)
We know that:
x = var('x') diff((sqrt(x)), x)
1/2/sqrt(x)
Let's evaluate the indefinite integral.
We will use substitution
Let \(u = \dfrac{\sqrt{x}}{4}\)
\(8 du = \dfrac{1}{\sqrt{x}} dx\)
\(\int 8 \cos (u) du\)
\(= -8\sin u + C\)
\(= -8\sin (\dfrac{\sqrt{x}}{4}) + C\)
From theorem 5.4.3,
\(\int_{\pi^2}{4\pi^2} \dfrac{\cos (\sqrt{x}/4)}{\sqrt{x}} dx = -8\sin (\dfrac{\sqrt{4\pi^2}}{4}) + -8\sin (\dfrac{\sqrt{\pi^2}}{4})\)
x = var('x') f = -8*sin(sqrt(x)/4) f(4*(pi^2)) - f(pi^2)
4*sqrt(2) - 8
1.15 Solution 15
\(\int \dfrac{\sin^2 x}{\cos^2 x} dx\)
We know that \(\sin^2 x = 1 - \cos^2 x\)
\(= \int \dfrac{1 - \cos^2 x}{\cos^2 x} dx\)
\(= \int \dfrac{1}{\cos^2 x} dx - \int 1 dx\)
\(= \int \sec^2 x dx - \int 1 dx\)
\(= \tan x - x + C\)