UP | HOME

1 Summations

1.1 Solution 1

1.1.1 Solution a

From theorem 5.1.1, we can rewrite them as individual summations:

i, n = var('i,n')
a = sum(i^2, i , 1, n)
a

b = sum(-2*i, i, 1, n)
b

c = sum(3, i, 1, n)
c

d = a + b + c
d
d.factor()
1/3*n^3 + 1/2*n^2 + 1/6*n
-n^2 - n
3*n
1/3*n^3 - 1/2*n^2 + 13/6*n
1/6*(2*n^2 - 3*n + 13)*n

We can indeed confirm the result:

i,n = var('i n')
f = i^2 - (2*i) + 3
sum(f(i), i, 1, n).factor()
1/6*(2*n^2 - 3*n + 13)*n

1.1.2 Solution b

sum((i^2 - (2*i) + 3), i, 1, 5)
40
f
f(1) + f(2) + f(3) + f(4) + f(5)
i^2 - 2*i + 3
40

1.2 Solution 2

From theorem 5.1.1 and results from 1.4, we can rewrite them as individual summations:

i, n = var('i n')
f = i^3 - (4*i)

a = sum(i^3, i, 1, n).factor()
b = sum((-4*i),i,1,n).factor()

(a + b).factor()
1/4*(n^2 + n - 8)*(n + 1)*n

Let's check our solution:

sum(f,i,1,n).factor()
1/4*(n^2 + n - 8)*(n + 1)*n

1.3 Solution 3

From theorem 5.1.1 and results from 1.4, we can rewrite them as individual summations:

j, n = var('j n')

a = sum(2*(j^3), j, 1, n)
b = sum(-1*j, j, 1, n)

(a - b).factor()
1/2*(n^2 + n + 1)*(n + 1)*n

1.4 Solution 4

From theorem 5.1.1 and results from 1.4, we can rewrite them as individual summations:

i, t = var('i t')

a = sum(3 * (i^2), i, 1, t)
b = sum(-i, i, 1, t)
c = sum(2, i, 1, t)

(a + b + c).factor()
(t^2 + t + 2)*t

Let's verify the solution:

f = 3*(i^2) - i + 2
sum(f(i), i, 1, n).factor()
(n^2 + n + 2)*n

1.5 Solution 5

Let's expand \((1+1)^3\):

i = var('i')
((i+1)^3).expand()
i^3 + 3*i^2 + 3*i + 1

Now from theorem 5.1.1 and results from 1.4, we can rewrite them as individual summations:

i = var(i)

a = sum(i^3, i, 1, n)
b = sum(3*(i^2), i, 1, n)
c = sum(3*i, i, 1, n)
d = sum(1, i, 1, n)

(a+b+c+d).factor()
1/4*(n^2 + 3*n + 4)*(n + 3)*n

1.6 Solution 6

Let's find the solution from \(i = 1\) to \(i = n+3\) in this case:

i, n = var('i n')
whole = sum(i^2, i, 1, n+3).factor()
whole
1/6*(2*n + 7)*(n + 4)*(n + 3)

Now let's compute the summation from \(i = 1\) to \(i = 4\):

till_4 = sum(i^2, i, 1, 4)
till_4
30

The final solution is:

(whole - till_4).factor()
1/6*(2*n^2 + 23*n + 96)*(n - 1)

Let's verify the solution:

i, n = var('i n')
sum(i^2, i, 5, (n+3)).factor()
1/6*(2*n^2 + 23*n + 96)*(n - 1)

1.7 Solution 7

1.7.1 Solution a

Now from theorem 5.1.1 and results from 1.4, we can rewrite them as individual summations:

i, n = var('i n')

a = sum(i^2, i, 1, n)
b = sum(5*i, i, 1, n)
(a+b).factor()
1/3*(n + 8)*(n + 1)*n

1.7.2 Solution b

Now from theorem 5.1.1 and results from 1.4, we can rewrite them as individual summations. Let's find the sum from \(j = 1\) to \(n+5\)

j, n = var('j n')

a = sum(j^2, j, 1, n+5)
b = sum(-5*j, j, 1, n+5)
(a + b).factor()
1/3*(n + 6)*(n + 5)*(n - 2)

Now let's compute the same sum from \(j = 1\) to \(5\):

a1 = sum(j^2, j, 1, 5)
b1 = sum(-5*j, j, 1, 5)
(a + b - a1 - b1).factor()
1/3*(n + 8)*(n + 1)*n

1.7.3 Solution c

We have already shown from (a) and (b) that they are equal. Let's expand them:

i = var(i)
f = i^2 + 5*i
[f(1) , f(2) , f(3) , f(n).factor()]

g = j^2 - 5*j
[g(6), g(7), g(8), g(n+6).factor()]
[6, 14, 24, (n + 5)*n]
[6, 14, 24, (n + 6)*(n + 1)]

We can see how each of them expand to the same value when started from their staring interval. That's why both come to the same value:

f(n).factor()
g(n+5).factor()
(n + 5)*n
(n + 5)*n

1.8 Solution 8

1.8.1 Part one

We need to prove this:

\(\sum_{i=1}^n (ca_i) = ca_1 + ca_2 + ... + ca_n = c(a_1 + a_2 + ... + a_n) = c\sum_{i=1}^n a_i\)

We will prove using mathematical induction.

Base case: \(n= 1\)

\(\sum_{i=1}^n ca_i = ca_1\)

Induction step: Suppose \(\sum_{i=1}^n (ca_i) = c\sum_{i=1}^n a_i\)

\(\sum_{i=1}^{n+1} (ca_i) = \sum_{i=1}^n (ca_i) + ca_{n+1}\)

\(= c\sum_{i=1}^n a_i + ca_{n+1}\) (Induction case)

\(= c(\sum_{i=1}^n a_i + a_{n+1})\)

\(= c(\sum_{i=1}^{n+1} a_i)\)

This completes the mathematical induction proof.

1.8.2 Part two

We need to prove this:

\(\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i\)

We will prove using mathematical induction.

Base case: \(n = 1\)

\(\sum_{i=1}^n (a_i + b_i) = a_i + b_i\)

Induction step: Suppose \(\sum_{i=1}^n (a_i + b_i) = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i\)

\(\sum_{i=1}^{n+1} (a_i + b_i)\)

\(= \sum_{i=1}^{n} (a_i + b_i) + a_{n+1} + b_{n+1}\)

\(= \sum_{i=1}^n a_i + \sum_{i=1}^n b_i + a_{n+1} + b_{n+1}\)

\(= \sum_{i=1}^n a_{i+1} + \sum_{i=1}^n b_{i+1}\)

\(= \sum_{i=1}^{n+1} a_{i} + \sum_{i=1}^{n+1} b_{i}\)

This completes the mathematical induction proof.

1.9 Solution 9

\(\sum_{i=1}^n [(i+1)^4 - i^4]\)

We need to derive equation 5.9 using the above equation.

Let's first expand the above equation:

  i = var('i')
  f1 = (i+1)^4
  f2 = -i^4
  [f1(1), f2(1), f1(2), f2(2), f1(3), f2(3), f1(4), f2(4), f1(i-1), f2(i-1), f1(i), f2(i)]
[16, -1, 81, -16, 256, -81, 625, -256, i^4, -(i - 1)^4, (i + 1)^4, -i^4]

You can see that the first term is cancelled by the fourth term. The third term is cancelled by two terms following it. So apart from \(-1\) and \((i+1)^4\) everything else is cancelled.

So, \(\sum_{i=1}^n [(i+1)^4 - i^4] = (i+1)^4 - 1\)

We also know that:

x = (i+1)^4 - i^4
x.simplify_full()
4*i^3 + 6*i^2 + 4*i + 1

So, \(\sum_{i=1}^n [(i+1)^4 - i^4] = \sum_{i=1}^n(4*i^3 + 6*i^2 + 4i + 1)\)

Combining both the equations:

\((i+1)^4 - 1 = 4. \sum_{i=1}^n i^3 + \sum{i=1}^n(6*i^2 + 4*i + 1)\)

sum(((6*i^2) + (4*i) + 1), i, 1, n)
2*n^3 + 5*n^2 + 4*n

Reducing it further:

\((n+1)^4 - 1 = 4. \sum_{i=1}^n i^3 + 2*n^3 + 5*n^2 + 4n\)

\(4\sum_{i=1}^n i^3 = (n+1)^4 - 1 - 2*n^3 - 5*n^2 - 4n\)

Reducing the equations:

n = var('n')
((n+1)^4 - 1 - (2*n^3) - (5*n^2) - (4*n)).factor()
(n + 1)^2*n^2

So, \(\sum_{i=1}^n i^3 = \dfrac{n^2(n+1)^2}{4}\)

1.10 Solution 10

We need to find alternative derivation of equation 5.4 by evaulating \(\sum_{i=1}^n [(i+1)^2-i^2]\)

Let's first expand the equation:

i = var(i)
f1 = (i+1)^2
f2 = -i^2

[f1(1), f2(1), f1(2), f2(2), f1(3), f2(3), f1(i-1), f2(i-1), f1(i), f2(i)]
[4, -1, 9, -4, 16, -9, i^2, -(i - 1)^2, (i + 1)^2, -i^2]

Apart from \(-1\) and \((i+1)^2\) everything else gets cancelled out.

So, \(\sum_{i=1}^n [(i+1)^2-i^2] = (n+1)^2 - 1\)

We also know that:

((i+1)^2 - i^2).simplify_full()
2*i + 1

So, \(\sum_{i=1}^n [(i+1)^2-i^2] = \sum_{i=1}^n 2i + 1\)

Combining both the equations:

\((n+1)^2 - 1 = \sum_{i=1}^n 2i + 1\)

\(\sum_{i=1}^n i = \dfrac{(n+1)^2 - n}{2}\)

((n+1)^2 - n - 1).simplify_full()
n^2 + n

So, \(\sum_{i=1}^n i = \dfrac{n^2 + n}{2}\)

1.11 Solution 11

We need to prove \(\sum_{i=1}^n i = \dfrac{n^2 + n}{2}\)

We will prove using mathematical induction.

Base case: \(n = 1\)

\(\sum_{i=1}^n i = \dfrac{1 + 1}{2} = \dfrac{1}{1} = 1\)

\(\sum_{i=1}^1 = 1\)

The base case holds.

Induction step: Suppose \(\sum_{i=1}^n i = \dfrac{n^2 + n}{2}\).

\(\sum_{i=1}^{n+1} i = \sum_{i=1}^n i + (n+1)\)

\(\sum_{i=1}^{n+1} i = \dfrac{n^2 + n}{2} + (n+1)\) (Induction step)

(((n^2 + n)/2) + (n+1)).factor()
1/2*(n + 2)*(n + 1)
((n+1)*(n+2)).simplify_full()
n^2 + 3*n + 2

So, \(\sum_{i=1}^{n+1} i = \dfrac{(n+1)^2 + (1+n)}{2}\)

This completes the mathematical induction proof.

1.12 Solution 12

1.12.1 Solution a

\(\sum_{i=1}^n \dfrac{1}{i(i+1)}\)

i, n = var('i n')
f = (1/(i*(i+1)))
[sum(f(i), i, 1, 1), sum(f(i), i, 1, 2), sum(f(i), i, 1, 3), sum(f(i), i, 1, 4)]
[1/2, 2/3, 3/4, 4/5]

So, I'm guessing the formula for the sum as:

\(\dfrac{n}{n+1}\)

Let's try to prove it using mathematical induction.

Base case: \(n = 1\)

\(\sum_{i=1}^n \dfrac{1}{i(i+1)} = \dfrac{1}{1(1+1)} = \dfrac{1}{2}\)

\(\dfrac{n}{n+1} = \dfrac{1}{2}\)

The base case holds.

Induction step: Suppose \(\sum_{i=1}^n \dfrac{1}{i(i+1)} = \dfrac{n}{n+1}\)

\(\sum_{i=1}^{n+1} \dfrac{1}{i(i+1)} = \sum_{i=1}^n \dfrac{1}{i(i+1)} + \dfrac{1}{(n+1)(n+2)}\)

\(= \dfrac{n}{n+1} + \dfrac{1}{(n+1)(n+2)}\) (Induction step)

\(= \dfrac{1}{n+1}(n + \dfrac{1}{n+2})\)

\(= \dfrac{1}{n+1} \dfrac{n^2 + 2n + 1}{n+2}\)

\(= \dfrac{1}{n+1} \dfrac{(n+1)^2}{n+2}\)

\(= \dfrac{n+1}{n+2}\)

So, \(\sum_{i=1}^{n+1} \dfrac{1}{i(i+1)} = \dfrac{n+1}{n+2}\)

This completes the mathematical induction proof.

We can also verify this using SageMath that our guessed formula is right:

sum(f(i),i,1,n)
n/(n + 1)

1.12.2 Solution b

We need to verify that \(\dfrac{1}{i+1} = \dfrac{1}{i} - \dfrac{1}{i+1}\)

\(\dfrac{1}{i} - \dfrac{1}{i+1}\)

\(= \dfrac{i+1-1}{i(i+1)}\)

\(= \dfrac{i}{i(i+1)}\)

\(= \dfrac{1}{i+1}\)

Now let's use this fact to write part(a) as telescoping sum.

i = var(i)
f1 = (1/i)
f2 =  - (1/(i+1))
[f1(1), f2(1), f1(2), f2(2), f1(3), f2(3), f1(n-1), f2(n-1), f1(n), f2(n)]
[1, -1/2, 1/2, -1/3, 1/3, -1/4, 1/(n - 1), -1/n, 1/n, -1/(n + 1)]

We can see how all the terms cancel out except the first one and the last term. So,

\(\sum_{i=1}^{n} \dfrac{1}{i(i+1)} = 1 - \dfrac{1}{n+1}\)

\(= \dfrac{n}{n+1}\)

1.13 Solution 13

Suppose \(r\) is a real number and \(r \neq 1\)

1.13.1 Solution a

\(\sum_{i=1}^n [r^{i+1} - r^i]\)

i,r = var('i r')
f1 = r^(i+1)
f2 = -r^i

[f1(r=r,i=1), f2(r=r,i=1), f1(r=r,i=2), f2(r=r,i=2), f1(r=r,i=3), f2(r=r,i=3), f1(r=r,i=n-1), f2(r=r,i=n-1), f1(r=r,i=n), f2(r=r,i=n)]
[r^2, -r, r^3, -r^2, r^4, -r^3, r^n, -r^(n - 1), r^(n + 1), -r^n]

Some observations:

  • First term is cancelled with the fourth term
  • Third term is cancelled with the sixth term
  • Second term is not cancelled
  • Second term from the last is not cancelled

So, \(\sum_{i=1}^n [r^{i+1} - r^i] = r^{n+1} - r\)

Let's verify the solution using SageMath:

sum(r^(i+1) - r^i, i, 1, n)
r^(n + 1) - r

1.13.2 Solution b

\(\sum_{i=1}^n [(r-1)r^i] = (r-1)\sum_{i=1}^n r^i\)

We need to find the formula for \(\sum_{i=1}^n r^i\)

We know from (a) that \(\sum_{i=1}^n [r^{i+1} - r^i] = r^{n+1} - r\).

So, \(r^{n+1} - r = (r-1)\sum_{i=1}^n r^i\)

\(\sum_{i=1}^n r^i = \dfrac{r^{n+1} - r}{r-1}\)

1.13.3 Solution c

\(\sum_{i=1}^n (\dfrac{1}{2})^i\)

Using the formula from (b),

r, n = var('r n')
f = (r^(n+1) - r)/(r - 1)
f(r=(1/2)).simplify()
-1/2^n + 1

1.14 Solution 14

\(\sum_{i=1}^n i2^i = 2 + (n-1)2^{n+1}\)

Let's prove it using mathematical induction.

Base case: \(n = 1\)

\(\sum_{i=1}^n i2^i = 1.2^1 = 2\)

\(2 + (n-1)2^{n+1} = 2 + 0 = 2\)

The base case holds.

Induction case:

Suppose \(\sum_{i=1}^n i2^i = 2 + (n-1)2^{n+1}\).

\(\sum_{i=1}^{n+1} i2^i = \sum_{i=1}^n i2^i + (n+1)2^{n+1}\)

\(= 2 + (n-1)2^{n+1} + (n+1)2^{n+1}\) (Induction step)

\(= 2 + 2^{n+1}(n-1+n+1)\)

\(= 2 + 2^{n+1}(2n)\)

\(= 2 + n2^{n+2}\)

So, \(\sum_{i=1}^{n+1} i2^i = 2 + n2^{n+2}\)

This completes the mathematical induction proof.

1.15 Solution 15

Suppose \(\sin (\dfrac{\theta}{2}) \neq 0\) We need to prove that

\(\sum_{i=1}^n \cos(i\theta) = \dfrac{\cos(\dfrac{(n+1)\theta}{2}) \sin(\dfrac{n\theta}{2})}{\sin(\theta / 2)}\)

Let's prove it using mathematical induction.

Base case: \(n = 1\)

\(\sum_{i=1}^n \cos(i\theta) = cos (\theta)\)

\(\dfrac{\cos(\dfrac{(n+1)\theta}{2}) \sin(\dfrac{n\theta}{2})}{\sin(\theta / 2)} = \dfrac{\cos(\theta) \sin(\theta / 2)}{\sin(\theta / 2)} = \cos(\theta)\)

The base case holds.

Inducation case:

Suppose \(\sum_{i=1}^n \cos(i\theta) = \dfrac{\cos(\dfrac{(n+1)\theta}{2}) \sin(\dfrac{n\theta}{2})}{\sin(\theta / 2)}\)

\(\sum_{i=1}^{n+1} \cos(i\theta) = \sum_{i=1}^{n} \cos(i\theta) + cos((n+1) \theta)\)

\(= \dfrac{\cos(\dfrac{(n+1)\theta}{2}) \sin(\dfrac{n\theta}{2})}{\sin(\theta / 2)} + cos((n+1) \theta)\)

We know that \(\cos u \sin v = \dfrac{1}{2}[\sin(u+v)-\sin(u-v)]\)

\(\cos(\dfrac{(n+1)\theta}{2}) \sin(\dfrac{n\theta}{2}) = \dfrac{1}{2}[\sin(\dfrac{(n+1)\theta}{2} + \dfrac{n\theta}{2}) - \sin(\dfrac{(n+1)\theta}{2} - \dfrac{n\theta}{2})]\)

\(= \dfrac{1}{2}[\sin(\dfrac{(2n + 1)\theta}{2}) - \sin(\dfrac{\theta}{2})]\)

Dividing the above equation by \(\sin (\theta / 2)\)

\(= \dfrac{1}{2}\dfrac{\sin(\dfrac{(2n + 1)\theta}{2})}{\sin(\dfrac{\theta}{2})} - \dfrac{1}{2}\)

Combining it with the orignal equation:

\(= \dfrac{1}{2}\dfrac{\sin(\dfrac{(2n + 1)\theta}{2})}{\sin(\dfrac{\theta}{2})} - \dfrac{1}{2} + \cos((n+1) \theta)\)

n, x = var('n x')

a = sin(((2*n + 1)*x)/2)
b = sin(x/2)
c = 1/2 * (a/b)
assume(b > 0)
f = c - (1/2) + cos((n + 1)*x)

f.simplify_full()
1/2*(2*cos((n + 1)*x)*sin(1/2*x) + sin(1/2*(2*n + 1)*x) - sin(1/2*x))/sin(1/2*x)

(todo: Fix this proof)