1 Solution 1
\(\lim_{x \to 1} \dfrac{x^4 - 1}{x^5 - 1}\)
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = (x^4 - 1) df = diff(f, x) g = x^5 - 1 dg = diff(g,x) res = simplify(df / dg) res_h = function_handle(res) rats(res_h(1))
octave> octave> f = (sym)
4
x - 1
df = (sym)
3
4⋅x
g = (sym)
5
x - 1
dg = (sym)
4
5⋅x
res = (sym)
4
───
5⋅x
octave> res_h =
@(x) 4 ./ (5 * x)
ans = 4/5
So from L'Hopital's rule, we can conclude that \(\lim_{x \to 1} \dfrac{x^4 - 1}{x^5 - 1} = \dfrac{4}{5}\)
We can also use GNU Octave to verify our limits:
clear syms x L = limit((x^4 - 1)/(x^5 - 1), x, 1)
octave> L = (sym) 4/5
2 Solution 2
\(\lim_{x \to 1} \dfrac{\sqrt[4]{x} - 1}{\sqrt[5]{x} - 1}\)
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = (x^(1/4) - 1) df = diff(f, x) g = x^(1/5) - 1 dg = diff(g,x) res = simplify(df / dg) res_h = function_handle(res) rats(res_h(1))
octave> octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mpower at line 76 column 5
f = (sym)
4 ___
╲╱ x - 1
df = (sym)
1
──────
3/4
4⋅x
octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mpower at line 76 column 5
g = (sym)
5 ___
╲╱ x - 1
dg = (sym)
1
──────
4/5
5⋅x
octave> res = (sym)
20___
5⋅╲╱ x
───────
4
octave> res_h =
@(x) 5 * x .^ (1 / 20) / 4
ans = 5/4
So from L'Hopital's rule, we can conclude that \(\lim_{x \to 1} \dfrac{\sqrt[4]{x} - 1}{\sqrt[5]{x} - 1} = \dfrac{5}{4}\)
We can also use GNU Octave to verify our limits:
clear syms x L = limit((x^(1/4) - 1)/(x^(1/5) - 1), x, 1)
octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mpower at line 76 column 5
warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mpower at line 76 column 5
L = (sym) 5/4
3 Solution 3
\(\lim_{u \to 4} \dfrac{u^{3/2}-8}{\sqrt{u}-2}\)
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms u f = u^(3/2) - 8 df = diff(f,u) g = u^(1/2)-2 dg = diff(g,u) res = simplify(df/dg) res_h = function_handle(res) res_h(4)
octave> octave> octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mpower at line 76 column 5
f = (sym)
3/2
u - 8
df = (sym)
3⋅√u
────
2
octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 379 column 13
mpower at line 76 column 5
g = (sym) √u - 2
dg = (sym)
1
────
2⋅√u
octave> res = (sym) 3⋅u
octave> res_h =
@(u) 3 * u
ans = 12
So from L'Hopital's rule, we can conclude that \(\lim_{u \to 4} \dfrac{u^{3/2}-8}{\sqrt{u}-2} = 12\).
4 Solution 4
\(\lim_{x \to 1} \dfrac{x^8 + 3x^6 - 5x^2 + 1}{x^7 + 4x^5 - 3x^3 - 2}\)
clear pkg load symbolic syms x f = x^8 + (3*x^6) - (5*x^2) + 1 fh = function_handle(f) fh(1) g = x^7 + (4*x^5) - (3*x^3) - 2 gh = function_handle(g) gh(1)
octave> octave> octave> f = (sym)
8 6 2
x + 3⋅x - 5⋅x + 1
fh =
@(x) x .^ 8 + 3 * x .^ 6 - 5 * x .^ 2 + 1
ans = 0
octave> g = (sym)
7 5 3
x + 4⋅x - 3⋅x - 2
gh =
@(x) x .^ 7 + 4 * x .^ 5 - 3 * x .^ 3 - 2
ans = 0
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
df = diff(f, x) dg = diff(g, x) res = simplify(df/dg) res_h = function_handle(res) rats(res_h(1))
df = (sym)
7 5
8⋅x + 18⋅x - 10⋅x
dg = (sym)
6 4 2
7⋅x + 20⋅x - 9⋅x
octave> res = (sym)
⎛ 6 4 ⎞
2⋅⎝4⋅x + 9⋅x - 5⎠
────────────────────
⎛ 4 2 ⎞
x⋅⎝7⋅x + 20⋅x - 9⎠
res_h =
@(x) 2 * (4 * x .^ 6 + 9 * x .^ 4 - 5) ./ (x .* (7 * x .^ 4 + 20 * x .^ 2 - 9))
ans = 8/9
So from L'Hopital's rule, we can conclude that \(\lim_{x \to 1} \dfrac{x^8 + 3x^6 - 5x^2 + 1}{x^7 + 4x^5 - 3x^3 - 2} = \dfrac{8}{9}\)
We can also use GNU Octave to verify our limits:
L = limit(f/g, x, 1)
L = (sym) 8/9
5 Solution 5
\(\lim_{x \to 1} \dfrac{x^8 + x^6 - 7x^2 + 5}{x^8 + 2x^5 - 9x^2 + 6}\)
clear pkg load symbolic syms x f = x^8 + x^6 - (7*x^2) + 5 fh = function_handle(f) fh(1) g = x^8 + (2*x^5) - (9*x^2) + 6 gh = function_handle(g) gh(1)
octave> octave> octave> f = (sym)
8 6 2
x + x - 7⋅x + 5
fh =
@(x) x .^ 8 + x .^ 6 - 7 * x .^ 2 + 5
ans = 0
octave> g = (sym)
8 5 2
x + 2⋅x - 9⋅x + 6
gh =
@(x) x .^ 8 + 2 * x .^ 5 - 9 * x .^ 2 + 6
ans = 0
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
df = diff(f, x) dg = diff(g, x) res = simplify(df/dg) res_h = function_handle(res) res_h(1)
df = (sym)
7 5
8⋅x + 6⋅x - 14⋅x
dg = (sym)
7 4
8⋅x + 10⋅x - 18⋅x
octave> res = (sym)
6 4
4⋅x + 3⋅x - 7
───────────────
6 3
4⋅x + 5⋅x - 9
res_h =
@(x) (4 * x .^ 6 + 3 * x .^ 4 - 7) ./ (4 * x .^ 6 + 5 * x .^ 3 - 9)
octave> warning: division by zero
warning: called from
eval>@<anonymous> at line 1 column 27
ans = NaN
Okay, that gives a division by error. Let's check \(df\) and \(dg\) individually
df_h = function_handle(df) df_h(1) dg_h = function_handle(dg) dg_h(1)
df_h = @(x) 8 * x .^ 7 + 6 * x .^ 5 - 14 * x ans = 0 octave> dg_h = @(x) 8 * x .^ 7 + 10 * x .^ 4 - 18 * x ans = 0
Let's try applying L'Hopital's rule on it.
dff = diff(df, x) dgg = diff(dg, x) res = simplify(dff/dgg) res_h = function_handle(res) rats(res_h(1))
dff = (sym)
6 4
56⋅x + 30⋅x - 14
dgg = (sym)
6 3
56⋅x + 40⋅x - 18
octave> res = (sym)
6 4
28⋅x + 15⋅x - 7
─────────────────
6 3
28⋅x + 20⋅x - 9
res_h =
@(x) (28 * x .^ 6 + 15 * x .^ 4 - 7) ./ (28 * x .^ 6 + 20 * x .^ 3 - 9)
ans = 12/13
So from L'Hopital's rule, we can conclude that \(\lim_{x \to 1} \dfrac{x^8 + x^6 - 7x^2 + 5}{x^8 + 2x^5 - 9x^2 + 6} = \dfrac{12}{13}\)
6 Solution 6
\(\lim_{x \to \pi/2} \dfrac{cos (x + \pi)}{2x - \pi}\)
clear pkg load symbolic syms x f = cos(x + pi) g = 2*x - pi
octave> octave> octave> f = (sym) -cos(x) g = (sym) 2⋅x - π
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
df = diff(f,x) dg = diff(g,x) res = simplify(df/dg) res_h = function_handle(res) rats(res_h(pi / 2))
df = (sym) sin(x)
dg = (sym) 2
octave> res = (sym)
sin(x)
──────
2
res_h =
@(x) sin (x) / 2
ans = 1/2
So from L'Hopital's rule, we can conclude that \(\lim_{x \to \pi/2} \dfrac{cos (x + \pi)}{2x - \pi} = \dfrac{1}{2}\)
We can also use GNU Octave to verify our limits:
L = limit(f/g, x, pi/2)
warning: passing floating-point values to sym is dangerous, see "help sym" warning: called from double_to_sym_heuristic at line 50 column 7 sym at line 379 column 13 limit at line 92 column 5 L = (sym) 1/2
7 Solution 7
\(\lim_{x \to 2} \dfrac{\cos (\pi / x)}{x-2}\)
clear pkg load symbolic syms x f = cos(pi / x) g = x - 2
octave> octave> octave> f = (sym) ⎛π⎞ cos⎜─⎟ ⎝x⎠ g = (sym) x - 2
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
df = diff(f,x) dg = diff(g,x) res = simplify(df/dg) res_h = function_handle(res) res_h(2)
df = (sym)
⎛π⎞
π⋅sin⎜─⎟
⎝x⎠
────────
2
x
dg = (sym) 1
octave> res = (sym)
⎛π⎞
π⋅sin⎜─⎟
⎝x⎠
────────
2
x
res_h =
@(x) pi * sin (pi ./ x) ./ x .^ 2
ans = 0.78540
So from L'Hopital's rule, we can conclude that \(\lim_{x \to 2} \dfrac{\cos (\pi / x)}{x-2} = 0.78540\)
8 Solution 8
\(\lim_{t \to 1} \dfrac{\sqrt{t+3}-2}{\sqrt{t+8}-3}\)
clear pkg load symbolic syms t f = sqrt(t + 3) - 2 g = sqrt(t+8) - 3
octave> octave> octave> f = (sym) _______ ╲╱ t + 3 - 2 g = (sym) _______ ╲╱ t + 8 - 3
The above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
df = diff(f,t) dg = diff(g,t) res = simplify(df/dg) res_h = function_handle(res) rats(res_h(1))
df = (sym)
1
───────────
_______
2⋅╲╱ t + 3
dg = (sym)
1
───────────
_______
2⋅╲╱ t + 8
octave> res = (sym)
_______
╲╱ t + 8
─────────
_______
╲╱ t + 3
res_h =
@(t) sqrt (t + 8) ./ sqrt (t + 3)
ans = 3/2
So from L'Hopital's rule, we can conclude that \(\lim_{t \to 1} \dfrac{\sqrt{t+3}-2}{\sqrt{t+8}-3} = \dfrac{3}{2}\)
9 Solution 9
\(\lim_{\theta \to 0} (\tan(3\theta)\cot(4\theta))\)
We know that \(\cot (4\theta) = \dfrac{1}{\tan(4\theta)}\). So the above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
\(\tan(3\theta)\cot(4\theta) = \dfrac{\tan (3\theta)}{\tan(4\theta)} = \dfrac{\sin (3\theta)}{\sin (4\theta)} \dfrac{\cos (4\theta)}{\cos (3\theta)}\)
\(\lim_{\theta \to 0} \dfrac{\sin (3\theta)}{\sin (4\theta)} \dfrac{\cos (4\theta)}{\cos (3\theta)}\)
\(= \lim_{\theta \to 0} \dfrac{\sin (3\theta)}{\sin (4\theta)} \lim_{\theta \to 0} \dfrac{\cos (4\theta)}{\cos (3\theta)}\)
\(= \lim_{\theta \to 0} \dfrac{\sin (3\theta)}{\sin (4\theta)}\)
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = sin(3*x) g = sin(4*x) df = diff(f, x) dg = diff(g,x)
octave> octave> octave> f = (sym) sin(3⋅x) g = (sym) sin(4⋅x) octave> df = (sym) 3⋅cos(3⋅x) dg = (sym) 4⋅cos(4⋅x)
res = simplify(df/dg) res_h = function_handle(res) rats(res_h(0))
res = (sym) 3⋅cos(3⋅x) ────────── 4⋅cos(4⋅x) res_h = @(x) 3 * cos (3 * x) ./ (4 * cos (4 * x)) ans = 3/4
So from L'Hopital's rule, we can conclude that \(\lim_{\theta \to 0} (\tan(3\theta)\cot(4\theta)) = \dfrac{3}{4}\)
10 Solution 10
\(\lim_{t \to 0} \dfrac{\sec t - 1}{t^2}\)
We know that \(\sec (0) = 1\). So the above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms t f = sec(t) - 1 g = t^2 df = diff(f, t) dg = diff(g, t)
octave> octave> f = (sym) sec(t) - 1 g = (sym) 2 t octave> df = (sym) tan(t)⋅sec(t) dg = (sym) 2⋅t
Even the above \(\dfrac{df}{dg}\) limit approaches to \(0/0\). Let's apply L'Hospital's rule again:
ddf = diff(df, t) ddg = diff(dg, t)
ddf = (sym) ⎛ 2 ⎞ 2 ⎝tan (t) + 1⎠⋅sec(t) + tan (t)⋅sec(t) ddg = (sym) 2
With the above result, the denominator is constant. Let's find out the limit of the numerator:
ddf_h = function_handle(ddf) ddf_h(0)
ddf_h = @(t) (tan (t) .^ 2 + 1) .* sec (t) + tan (t) .^ 2 .* sec (t) ans = 1
Combining it with the denomintor the limit is \(\dfrac{1}{2}\). Let's verify using GNU octave if our solution is right:
L = limit(f/g, t, 0)
L = (sym) 1/2
11 Solution 11
\(\lim_{x \to 0} \dfrac{x - \sin x}{x^3}\)
We know that \(\sin x = 0\). So the above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
clear pkg load symbolic syms x f = x - sin(x) g = x^3 df = diff(f, x) dg = diff(g, x)
octave> octave> f = (sym) x - sin(x)
g = (sym)
3
x
octave> df = (sym) 1 - cos(x)
dg = (sym)
2
3⋅x
Even the above \(\dfrac{df}{dg}\) limit approaches to \(0/0\). Let's apply L'Hospital's rule again:
ddf = diff(df, x) ddg = diff(dg, x)
ddf = (sym) sin(x) ddg = (sym) 6⋅x
Even the above \(\dfrac{ddf}{ddg}\) limit approaches to \(0/0\). Let's apply L'Hospital's rule again:
dddf = diff(ddf, x) dddg = diff(ddg, x)
dddf = (sym) cos(x) dddg = (sym) 6
Combining it, the limit is \(\dfrac{1}{6}\)
12 Solution 12
\(\lim_{x \to 0} \dfrac{\tan x - x}{x^3}\)
We know that \(\tan 0 = 0\). So the above limit approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
clear pkg load symbolic syms x f = tan(x) - x g = x^3 df = diff(f, x) dg = diff(g, x)
octave> octave> f = (sym) -x + tan(x)
g = (sym)
3
x
octave> df = (sym)
2
tan (x)
dg = (sym)
2
3⋅x
Even the above \(\dfrac{df}{dg}\) limit approaches to \(0/0\). Let's apply L'Hospital's rule again:
ddf = diff(df, x) ddg = diff(dg, x)
ddf = (sym) ⎛ 2 ⎞ ⎝2⋅tan (x) + 2⎠⋅tan(x) ddg = (sym) 6⋅x
Even the above \(\dfrac{ddf}{ddg}\) limit approaches to \(0/0\). Let's apply L'Hospital's rule again:
dddf = diff(ddf, x) dddg = diff(ddg, x) dddf_h = function_handle(dddf) dddf_h(0)
dddf = (sym) ⎛ 2 ⎞ ⎛ 2 ⎞ ⎛ 2 ⎞ 2 ⎝tan (x) + 1⎠⋅⎝2⋅tan (x) + 2⎠ + 2⋅⎝2⋅tan (x) + 2⎠⋅tan (x) dddg = (sym) 6 octave> dddf_h = @(x) (tan (x) .^ 2 + 1) .* (2 * tan (x) .^ 2 + 2) + 2 * (2 * tan (x) .^ 2 + 2) .* tan (x) .^ 2 ans = 2
Combining it with the denominator, the limit is \(\dfrac{2}{6} = \dfrac{1}{3}\). Let's verify using GNU octave if our solution is right:
L = limit(f/g, x, 0)
L = (sym) 1/3
13 Solution 13
\(\lim_{x \to \dfrac{\pi^-}{2}} \dfrac{\tan x}{\cot (2x)}\)
We know that \(\tan \dfrac{\pi}{2} = \infty\)
We know that \(\tan \dfrac{2 * \pi}{2} = \tan \pi = 0\)
So, \(\lim_{x \to \dfrac{\pi^-}{2}} \dfrac{\tan (2*x)}{\cot (x)}\) approaches \(0/0\), so we can probably apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = tan (2*x) g = cot (x) df = diff(f,x) dg = diff(g,x)
octave> octave> octave> f = (sym) tan(2⋅x)
g = (sym) cot(x)
octave> df = (sym)
2
2⋅tan (2⋅x) + 2
dg = (sym)
2
- cot (x) - 1
That seems promising because of the constants, Let's apply the limits:
df_h = function_handle(df) dg_h = function_handle(dg) df_h((pi/2)) dg_h((pi/2))
df_h = @(x) 2 * tan (2 * x) .^ 2 + 2 dg_h = @(x) -cot (x) .^ 2 - 1 octave> ans = 2 ans = -1
Combining both, the limit is \(-2\).
14 Solution 14
\(\lim_{x \to -\infty} \dfrac{\csc (1/x)}{x^2}\)
We know that \(\csc (1/x) = \dfrac{1}{\sin (1/x)}\)
We know that \(\lim_{x \to -\infty} \dfrac{1}{\sin (1/x)} = \infty\)
So, \(\lim_{x \to -\infty} \dfrac{\csc (1/x)}{x^2}\) approaches \dfrac{\infty}{\infty}$, so we can apply L'Hopital's rule to compute the limits.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = 1/x^2 g = sin(1/x) df = diff(f,x) dg = diff(g,x)
octave> octave> octave> f = (sym)
1
──
2
x
g = (sym)
⎛1⎞
sin⎜─⎟
⎝x⎠
octave> df = (sym)
-2
───
3
x
dg = (sym)
⎛1⎞
-cos⎜─⎟
⎝x⎠
────────
2
x
Solving further:
res = simplify(df / dg, x) res_h = function_handle(res) res_h(Inf)
res = (sym)
2
────────
⎛1⎞
x⋅cos⎜─⎟
⎝x⎠
res_h =
@(x) 2 ./ (x .* cos (1 ./ x))
octave> ans = 0
So the limit is \(0\).
15 Solution 15
\(\lim_{x \to 0} x \tan(x+ \pi / 2)\)
We know that \(\tan (x + \pi/2) = -cot(x)\). So, \(\lim_{x \to 0} \dfrac{x * \cos(x)}{\sin(x)}\) approaches \(\dfrac{0}{0}\). So we can apply L'Hopital's rule on it.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = (-x)*cos(x) g = sin(x) df = diff(f,x) dg = diff(g,x)
octave> octave> octave> f = (sym) -x⋅cos(x) g = (sym) sin(x) octave> df = (sym) x⋅sin(x) - cos(x) dg = (sym) cos(x)
Let's compute further,
res = df/dg res_h = function_handle(res) res_h(0)
res = (sym) x⋅sin(x) - cos(x) ───────────────── cos(x) res_h = @(x) (x .* sin (x) - cos (x)) ./ cos (x) octave> ans = -1
So \(\lim_{x \to 0} x \tan(x+ \pi / 2) = -1\)
16 Solution 16
\(\lim_{x \to \infty} x * \cos(\dfrac{x\pi + 2}{2x + \pi})\)
\(\dfrac{\pi * x + 2}{2x + \pi} = \dfrac{x(\pi + 2/x)}{x(2 + \pi/x)}\)
\(= \dfrac{\pi + 2/x}{2 + \pi/x}\)
\(\lim_{x \to \infty} \cos \dfrac{\pi + 2/x}{2 + \pi/x} = 0\)
So, \(\lim_{x \to \infty} x * \cos(\dfrac{x\pi + 2}{2x + \pi})\) approaches \(\dfrac{0}{0}\). We can apply L'Hopital's rule.
Let's write some GNU Octave code to solve this further:
clear pkg load symbolic syms x f = cos((pi *x + 2)/(2*x + pi)) g = 1/x df = diff(f,x) dg = diff(g,x)
octave> octave> octave> f = (sym)
⎛π⋅x + 2⎞
cos⎜───────⎟
⎝2⋅x + π⎠
g = (sym)
1
─
x
octave> df = (sym)
⎛ π 2⋅(π⋅x + 2)⎞ ⎛π⋅x + 2⎞
-⎜─────── - ───────────⎟⋅sin⎜───────⎟
⎜2⋅x + π 2⎟ ⎝2⋅x + π⎠
⎝ (2⋅x + π) ⎠
dg = (sym)
-1
───
2
x
Let's compute further,
res = simplify(df / dg)
res = (sym) 2 ⎛ 2⎞ ⎛π⋅x + 2⎞ x ⋅⎝-4 + π ⎠⋅sin⎜───────⎟ ⎝2⋅x + π⎠ ───────────────────────── 2 2 4⋅x + 4⋅π⋅x + π
We know from our earlier result that,
\(\lim_{x \to \infty} \sin \dfrac{\pi + 2/x}{2 + \pi/x} = \sin (\dfrac{\pi}{2}) = 1\)
Computing other parts,
\(\dfrac{(-4 + \pi^2)}{4 + \dfrac{4\pi}{x} + \dfrac{\pi^2}{x^2}}\)
\(= \dfrac{-4 + \pi^2}{4}\)
17 Solution 17
Suppose \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0\)
Suppose \(\lim_{x \to \infty} \dfrac{f'(x)}{g'(x)} = L\)
\(\lim_{t \to 0^+} \dfrac{f(1/t)}{g(1/t)}\)
We know that as \(t \to 0^+\), \(\dfrac{1}{t} \to \infty\)
So, \(\dfrac{f'(1/t)}{g'(1/t)} \to \dfrac{0}{0}\)
Applying L'Hopital's rule:
\(\lim_{t \to 0^+} \dfrac{f'(1/t)}{g'(1/t)}\)
We know that, \(\lim_{t \to \infty} \dfrac{f'(x)}{g'(x)} = L\)
Since \(\dfrac{1}{t} \to \infty\), So, \(\lim_{t \to 0^+} \dfrac{f'(1/t)}{g'(1/t)} = L\)
Let \(t = \dfrac{1}{x}\)
As \(t \to 0^+, x \to \infty\)
As \(t \to 0^+, 1/t \to \infty\)
So, \(\lim_{x \to \infty} \dfrac{f(x)}{g(x)} = L\)
18 Solution 18
19 Solution 19
\(\lim_{x \to -\infty} \dfrac{\sqrt{x^2 + 1}}{x}\)
\(\lim_{x \to -\infty} \dfrac{\sqrt{x^2(1 + 1/x^2)}}{x}\)
\(\lim_{x \to -\infty} \dfrac{-x\sqrt{(1 + 1/x^2)}}{x}\)
\(\lim_{x \to -\infty} -\sqrt(1 + \dfrac{1}{x^2})\)
\(= -\sqrt{1} = -1\)
20 Solution 20
\(\lim_{x \to 0} \dfrac{\sin(1/x) + 2x\cos(1/x)}{\cos x}\)
Suppose \(\lim_{x \to 0} \sin(1/x)\) is equal to L.
Let \(v = \dfrac{1}{x}\)
So, \(\lim_{v \to \infty} \sin 0\) is not defined since it alternates between 1 and -1.
21 Solution 21
\(\lim_{x \to \infty} \dfrac{x - \sin x \cos x}{2x - x\cos x + \sin x - 2\sin x \cos x}\)
\(\lim_{x \to \infty} \sin x \cos x\) oscillates between -1 and 1 and hence it's not defined.
\(\lim_{x \to \infty} \sin x \cos x\) oscillates between -1 and 1 and hence it's not defined.
\(\lim_{x \to \infty} x - \sin x \cos x = \infty\)
So, the numerator is \(\infty\)
Similary,
$limx → ∞ -2 sin x cos x $ is undefined.
$limx → ∞ sin x $ is undefined.
\(\lim_{x \to \infty} x(2 - \cos x) = \infty\)
Combining them,
\(\lim_{x \to \infty} \dfrac{x - \sin x \cos x}{2x - x\cos x + \sin x - 2\sin x \cos x}\) is an indeterminate form of type \(\dfrac{\infty}{\infty}\)
22 Solution 22
f(x) =
\begin{cases} \dfrac{\sin x}{x}, & \text{ $x \neq$ 0} \\ 1, & \text{$x = 0$} \end{cases}22.1 Solution a
\(f'(x) = \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h}\)
\(f'(0) = \lim_{h \to 0} \dfrac{f(h)-f(0)}{h}\)
\(= \lim_{h \to 0} f(h) - f(0) / \lim_{h \to 0} h\)
\(= \lim_{h \to 0} f(h) - 1 / \lim_{h \to 0} h\)
\(= \lim_{h \to 0} \dfrac{\sin h - h}{h^2}\)
Applying L'Hopital's rule:
\(= \lim_{h \to 0} \dfrac{\cos h - 1}{2h}\)
\(= \lim_{h \to 0} \dfrac{\sin h}{2} = 0\)
So, \(f'(0) = 0\)
22.2 Solution b
For \(f'(0)\) to be continous at 0, it should be
\(f'(0) = \lim_{x \to 0} f'(x)\) and the limit should exist.
We know that \(f'(0) = 0\)
Let's compute the one sided limit:
\(\lim_{x \to 0^-} f'(x) = \lim_{x \to 0^-} \dfrac{\sin x}{x} = 1\)
Since it's not equal to 0. So it is not continous.