UP | HOME

1 Optimization Problems

1.1 Solution 1

c4s6a1.png

Bottom vertices: \((x_1,0), (x_2,0)\)

Top vertices: \((x_1, 75-x_1^2), (x_2, 75-x_2^2)\)

Since it is a rectangle, the width should be equal:

Width = \(75-x_1^2 = 75-x_2^2\)

\(x_1^2 = x_2^2\)

\(x_1 = \pm x_2\)

Area of rectangle = \((x_2 - x_1).(75-x_1^2)\)

So, \(x_1 \neq x_2\) as are will be zero in that case.

\(x_1 = -x_2\)

Area = \(2x_2(75-x_2^2)\)

Replacing \(x_2\) with \(x\),

\(f(x) = 2x(75-x^2)\)

Domain: \((0, \infty)\)

Let's write GNU Octave code to solve this further:

pkg load symbolic
syms x
f = 2*x*(75 - (x^2))
df = simplify(diff(f,x))

solve(df == 0,x)
octave> f = (sym)

      ⎛      2⎞
  2⋅x⋅⎝75 - x ⎠
df = (sym)

           2
  150 - 6⋅x
octave> ans = (sym 2×1 matrix)

  ⎡-5⎤
  ⎢  ⎥
  ⎣5 ⎦

So the critical number is \(-5\) and \(5\). Since the domain is \((0, \infty)\), we should use the critical number \(5\).

dfh = function_handle(df)
[dfh(4), dfh(6)]
dfh =

@(x) 150 - 6 * x .^ 2
ans =

   54  -66

So the function has local maximum at \(5\). Let's compute the largest possible area for the rectangle:

fh = function_handle(f)
[fh(5)]
fh =

@(x) 2 * x .* (75 - x .^ 2)
ans =  500

1.2 Solution 2

References:

c4s6a2.png

Rectangular box volume = 500 cubic inches.

It has square base.

It has open top.

Volume \(= y.y.x = xy^2\)

\(xy^2 = 500\)

Surface area \(= 4xy + y^2\)

\(x = \dfrac{500}{y^2}\)

SA \(= 4.\dfrac{500}{y^2}.y + y^2\)

\(= \dfrac{2000}{y} + y^2\)

\(f(y) = \dfrac{2000}{y} + y^2\)

Domain: \((0, \infty)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms y
f = (2000/y) + y^2
df = simplify(diff(f,y))

solve(df == 0, y)
octave> octave> f = (sym)

   2   2000
  y  + ────
        y
df = (sym)

        2000
  2⋅y - ────
          2
         y
octave> ans = (sym 3×1 matrix)

  ⎡    10     ⎤
  ⎢           ⎥
  ⎢-5 - 5⋅√3⋅ⅈ⎥
  ⎢           ⎥
  ⎣-5 + 5⋅√3⋅ⅈ⎦

So \(10\) is critical number for the function. Now let's find if we have a local minima or a maxima:

dfh = function_handle(df)
[dfh(9), dfh(11)]
dfh =

@(y) 2 * y - 2000 ./ y .^ 2
ans =

  -6.6914   5.4711

So at \(10\) we have a local minima. So the square base has the dimension of \(10\) inches. The box's height will be:

height = 500/(y^2)
height_handle = function_handle(height)
[height_handle(10)]
height = (sym)

  500
  ───
    2
   y
height_handle =

@(y) 500 ./ y .^ 2
ans =  5

So the height should be \(5\) inches. We can indeed verify if the volume is coming to \(500\) cubic inches:

10*10*5
ans =  500

So the dimensions to minimize the amount of material needed is \(10\) inches as the square base on each of it's side. And \(5\) inches as the height of the rectangular box.

1.3 Solution 3

c4s6a2.png

Details:

  • Rectangular box
  • Square base
  • Open box

Material = 75 square inches

We need to find largest volume.

sibi: start from here

clear
syms y
f = y^2*((75/(4*y)) - (y/4))

df = simplify(diff(f,y))
solve(df==0, y)
octave> f = (sym)

   2 ⎛  y    75⎞
  y ⋅⎜- ─ + ───⎟
     ⎝  4   4⋅y⎠
octave> df = (sym)

          2
  75   3⋅y
  ── - ────
  4     4
ans = (sym 2×1 matrix)

  ⎡-5⎤
  ⎢  ⎥
  ⎣5 ⎦

\(y\) cannot be \(-5\) as the dimension cannot be in negative. Let's check if the critical number \(5\) is a local minima or a maxima.

dfh = function_handle(df)
[dfh(4), dfh(6)]
dfh =

@(y) 75 / 4 - 3 * y .^ 2 / 4
ans =

   6.7500  -8.2500

So we confirm that the function attains it's local maximum at \(5\). So now let's find the largets possible volume:

fh = function_handle(f)
[fh(5)]
fh =

@(y) y .^ 2 .* (-y / 4 + 75 ./ (4 * y))
ans =  62.500

So the largest possibe volume is \(62.5\) cubic inches.

1.4 Solution 4

Rectangular cardboard: 24 inch * 15 inch

c4s6a4.jpg

We need to find the largets possible volume of it.

\(z = 15-2x\)

\(y - 24-2x\)

Volume = \(x.y.z = x(24-2x)(15-2x)\)

\(V = x(24-2x)(15-2x)\)

\(f(x) = x(24-2x)(15-2x)\)

\(Domain: (0,15)\)

Let's write GNU Octave code to solve this further:

Let's find the critical numbers first.

clear
pkg load symbolic
syms x

f = x*(24 - 2*x)*(15 - 2*x)
df = simplify(diff(f,x))

solve(df==0, x)
octave> octave> octave> f = (sym) x⋅(15 - 2⋅x)⋅(24 - 2⋅x)
df = (sym)

      2
  12⋅x  - 156⋅x + 360
octave> ans = (sym 2×1 matrix)

  ⎡3 ⎤
  ⎢  ⎥
  ⎣10⎦

So we have two critical numbers: \(3, 10\).

Now let's try to find which one is the local maxima:

dfh = function_handle(df)
[dfh(2), dfh(4), dfh(9), dfh(11)]
dfh =

@(x) 12 * x .^ 2 - 156 * x + 360
ans =

   96  -72  -72   96

So the local maxima is at \(3\). Let's find the maximum possibe volume of the box:

fh = function_handle(f)
[fh(3)]
fh =

@(x) x .* (15 - 2 * x) .* (24 - 2 * x)
ans =  486

So the largest possible volume of the box is \(486\) cubic inches.

1.5 Solution 5

Rectangles houses being built.

Height of wall of house: 10 feet

House will have flat roof.

Front wall of house: Bricks

Side wall and Back wall: Sticks

Costs of Brick = $4 per square feet

Costs of Stick = $2 per square feet

Roof wall = Straw

Cost of straw = $1 per square feet

Total money to spend: $3000

We need to maximize floor space.

Width of front wall = f

Width of back wall = f

Width of side walls = S

c4s6a5.jpg

Tota surface area = 10f + 10f + 10s + 10s + fs

\(3000 = 10.f.4 + 10.f.2 + 10.s.2 + 10.s.2 + f.s.1\)

\(3000 = 40f + 20f + 20s + 20s + fs\)

\(3000 = 60f + 40s + fs\)

\(3000 = 60f + fs + 40s\)

\(f(60 + s) = 3000 - 40s\)

\(f = \dfrac{3000 - 40s}{60+s}\)

Let's write GNU Octave code to find the local maxima of the function:

Domain: \((0, \infty)\)

clear
pkg load symbolic
syms s

f = (s*(3000-(40*s)))/(60+s)

df = simplify(diff(f,s))

solve(df == 0, s)
octave> octave> octave> f = (sym)

  s⋅(3000 - 40⋅s)
  ───────────────
       s + 60
octave> df = (sym)

        2
  - 40⋅s  - 4800⋅s + 180000
  ─────────────────────────
       2
      s  + 120⋅s + 3600
octave> ans = (sym 2×1 matrix)

  ⎡-150⎤
  ⎢    ⎥
  ⎣ 30 ⎦

We are interested in the number \(30\) as that's in the domain. Let's check if it's local maximum:

dfh = function_handle(df)

[dfh(29), dfh(31)]
dfh =

@(s) (-40 * s .^ 2 - 4800 * s + 180000) ./ (s .^ 2 + 120 * s + 3600)
octave> ans =

   0.90393  -0.87429

So, we can confirm that is the local maxima. So width of side wall is \(30\) Let's find the width of the front wall:

front = (3000 - 40*s)/(60 + s)
front_handle = function_handle(front)
[front_handle(30)]
front = (sym)

  3000 - 40⋅s
  ───────────
     s + 60
front_handle =

@(s) (3000 - 40 * s) ./ (s + 60)
ans =  20

So these are the dimensions for the house to maximize floor space:

Side wall width: \(30\) Front wall width: \(20\)

1.6 Solution 6

Rectangular area = 150 inches square

Margin at sides and top = 1 inch

Margin at bottom = 2 inches

c4s6a6.jpg

\(a * b = 150 in^2\)

Cardboard length \(= b + 2\)

Cardboard width \(= a + 2\)

Total cardboard needed \(= (a+3)(b+2)\)

\(ab = 150\)

\(a = \dfrac{150}{b}\)

Surface Area (SA) \(= (a+3)(b+2)\)

\(= (\dfrac{150}{b} + 3)(b+2)\)

\(f(b) = (\dfrac{150}{b} + 3)(b+2)\)

Domain: \((0, 150)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms b

f = (150/b + 3)*(b+2)

fb = simplify(diff(f,b))

solve(fb == 0, b)
octave> octave> octave> f = (sym)

  ⎛    150⎞
  ⎜3 + ───⎟⋅(b + 2)
  ⎝     b ⎠
octave> fb = (sym)

      300
  3 - ───
        2
       b
octave> ans = (sym 2×1 matrix)

  ⎡-10⎤
  ⎢   ⎥
  ⎣10 ⎦

We will take \(10\) as the critical number since it's part of the domain.

fbh = function_handle(fb)

[fbh(9), fbh(11)]
fbh =

@(b) 3 - 300 ./ b .^ 2
octave> ans =

  -0.70370   0.52066

So the local minima is attained at critical number \(10\). Let's find the other dimension:

a = 150/b
ah = function_handle(a)

[ah(10)]
a = (sym)

  150
  ───
   b
ah =

@(b) 150 ./ b
octave> ans =  15

So the dimensions of the poster is \(10\) and \(15\) inches.

1.7 Solution 7

Wood cost = $3 per square feet

Metal cost = $2 per foot

Rectangle wood

Metral trim goes on top of sign

Printed area = 48 square feet

Printed area surrounded by 1 foot margin at top, bottom and sides.

c4s6a7.jpg

\(a*b = 48\)

Total surface area = \((a+2)(b+2)\)

Cost depends on = Total surface area + Metal strip

\(= (a+2)(b+2) + a\)

\(ab = 48\)

\(a = \dfrac{48}{b}\)

Cost = \((a+2)(b+2).3 + (a+2).2\)

\(= (a+2)(2+(b+2).3)\)

\(= (\dfrac{48}{b} + 2)(2 + (b+2).3)\)

Domain: \((0, \infty)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms b

f = (48/b + 2)*(2 + (b+2)*3)
fb = simplify(diff(f,b))

solve(fb == 0, b)
octave> octave> octave> f = (sym)

  ⎛    48⎞
  ⎜2 + ──⎟⋅(3⋅b + 8)
  ⎝    b ⎠
fb = (sym)

      384
  6 - ───
        2
       b
octave> ans = (sym 2×1 matrix)

  ⎡-8⎤
  ⎢  ⎥
  ⎣8 ⎦

We will take \(8\) as the critical number since it's part of the domain.

fbh = function_handle(fb)

[fbh(7), fbh(9)]
fbh =

@(b) 6 - 384 ./ b .^ 2
octave> ans =

  -1.8367   1.2593

So the function attains it local minimum at \(8\). The other dimension is

48/8
ans =  6

Actual dimensions are \(a+2\) and \(b+2\). So the dimensions are \(8\) and \(10\) feets.

1.8 Solution 8

Cost of Material for partition = $1 per square feet

Cost of Other material = $2 per square feet

We need to find greatest volume that can be constructed for \(60\) dollars.

Length of square = a

Width of rectangle = b

Volume \(= b*a*a = ba^2\)

SA \(= a^2 + a^2 + a^2 + ab + ab + ab + ab\)

\(= 3a^2 + 4ab\)

Cost \(= 2a^2.2 + a^2.1 + 4ab.2\)

\(= 4a^2 + a^2 + 8ab\)

C \(= 5a^2 + 8ab\)

\(60 = 5a^2 + 8ab\)

\(8ab = 60 - 5a^2\)

\(b = \dfrac{60-5a^2}{8a}\)

Volume = \(ba^2 = \dfrac{(60-5a^2)a^2}{8a}\)

\(= \dfrac{(a).60-5a^2}{8a}\)

Domain: \((0, \infty)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms a

f = (60-(5*a^2))*a/8
df = simplify(diff(f,a))
solve(df == 0, a)
octave> octave> octave> f = (sym)

    ⎛        2⎞
  a⋅⎝60 - 5⋅a ⎠
  ─────────────
        8
df = (sym)

           2
  15   15⋅a
  ── - ─────
  2      8
ans = (sym 2×1 matrix)

  ⎡-2⎤
  ⎢  ⎥
  ⎣2 ⎦

We will take \(2\) as the critical number since it's part of the domain.

dfh = function_handle(df)

[dfh(1), dfh(3)]
dfh =

@(a) 3 / 4 - 3 * a .^ 2 / 16
octave> ans =

   0.56250  -0.93750

So the function has local maxima at \(2\). So the other dimension is:

b = (60 - (5*a^2))/(8*a)
bh = function_handle(b)
[bh(2)]
b = (sym)

          2
  60 - 5⋅a
  ─────────
     8⋅a
bh =

@(a) (60 - 5 * a .^ 2) ./ (8 * a)
ans =  2.5000

So \(a=1\) and \(b=2.5\)

1.9 Solution 9

Temp of coffee decreases \(4^\circ F\) for each square inch that is exposed to air.

Temp of coffee decreases \(2^\circ F\) for each square inch touching bottom and sides of mugh.

Must must hold \(3\pi\) cubic inches of coffee.

We need to find dimension to keep coffee as hot as possible.

$r = $ Radius of cylinder

\(h =\) Height of cylinder

Volume \(= \pi r^2 h = 3\pi\)

Area of top of the mug \(= \pi r^2\)

Area of bottom and side of mug = \(\pi r^2 + 2\pi r h\)

Temperature drops after \(5 min\) \(= \pi r^2 . 4 + (\pi r^2 + 2\pi r h).2\)

We need to find minimum value for the above equation so that the temp drop is low.

\(\pi r^2 h = 3\pi\)

\(r^2 h = 3\)

\(h = \dfrac{3}{r^2}\)

Temperature drop = \(\pi r^2 4 + (\pi r^2 + 2\pi r \dfrac{3}{4^2})2\)

\(= \pi r^2 4 + (\pi r^2 + 6 \dfrac{\pi}{r})2\)

\(f(r) = \pi r^2 4 + (\pi r^2 + 6 \dfrac{\pi}{r})2\)

Domain: \((0, \infty)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms r p

f = p*(r^2)*4 + (((p * r^2) + ((6*p/r)))*2)
df = simplify(diff(f,r))

solve(df==0, r)
octave> octave> octave> f = (sym)

       2   12⋅p
  6⋅p⋅r  + ────
            r
df = (sym)

       ⎛ 3    ⎞
  12⋅p⋅⎝r  - 1⎠
  ─────────────
         2
        r
octave> ans = (sym 3×1 matrix)

  ⎡    1     ⎤
  ⎢          ⎥
  ⎢  1   √3⋅ⅈ⎥
  ⎢- ─ - ────⎥
  ⎢  2    2  ⎥
  ⎢          ⎥
  ⎢  1   √3⋅ⅈ⎥
  ⎢- ─ + ────⎥
  ⎣  2    2  ⎦

There only one number which is part of the domain. Let's find if it's a local minima for the function:

dfh = function_handle(df)
[dfh(pi, 0.5), dfh(pi, 2)]
dfh =

@(p, r) 12 * p .* (r .^ 3 - 1) ./ r .^ 2
ans =

  -131.947    65.973

So we can confirm that it's a local minima. So the radius is \(1\) inch and the height of the cylinder is:

h = 3/(r^2)

hh = function_handle(h)
[hh(1)]
h = (sym)

  3
  ──
   2
  r
octave> hh =

@(r) 3 ./ r .^ 2
ans =  3

So the dimensions of the mug which will keep the coffee as hot as possible are height of \(3\) inches along with radius of \(1\) inch.

1.10 Solution 10

Cone's height = 18inches

Cone's base radius = 6 inches

We need to find the greates volume of cylinder that can be inscribed in thea bove cone.

Volume of cylinder \(= \pi r^2 h\)

$h = $ Height of cylinder

c4s6a10.jpg

Using similar triangle property,

\(\dfrac{h}{6-r} = \dfrac{18}{6} = 3\)

\(h = 18 - 3r\)

Volume \(= \pi r^2 h = \pi r^2 (18 - 3r)\)

\(f(r) = 3\pi r^2 (18 - 3r)\)

Domain: \((0, 18)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms r
f = 3*pi*r^2*(18-3*r)

df = simplify(diff(f,r))
solve(df == 0, r)
octave> octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
    double_to_sym_heuristic at line 50 column 7
    sym at line 379 column 13
    mtimes at line 63 column 5
f = (sym)

       2
  3⋅π⋅r ⋅(18 - 3⋅r)
octave> df = (sym) 27⋅π⋅r⋅(4 - r)
ans = (sym 2×1 matrix)

  ⎡0⎤
  ⎢ ⎥
  ⎣4⎦

Taking the value of 4 since it's in domain, let's see if it's the local maxima for the function.

dfh = function_handle(df)
[dfh(3), dfh(5)]
dfh =

@(r) 27 * pi * r .* (4 - r)
ans =

   254.47  -424.12

So at \(r=4\), the function attains it's maximum value. Let's find the cylinder's height now:

h = (18 - 3*r)
hh = function_handle(h)

hh(4)
h = (sym) 18 - 3⋅r
hh =

@(r) 18 - 3 * r
octave> ans =  6

So the dimensions of cylinder of greatest volume that can be inscribed is cylinder of radius 4 and height of 6 inches.

Reference video

1.11 Solution 11

Baking two layer round cake.

Volume of two layers of cake \(= 81\pi inches^3\)

Filling between layers

Fronstin on top and around sides.

Frosting cost = 10 cents per square inch

Filling cost = 20 cents per square inch

We need to find dimensions of cake to minimize the cost of filling and frosting.

SA of top of cake \(= \pi r^2\)

SA of side of cake \(= 2\pi r * h\)

where \(h\) is height of cake.

Total volume of cake \(= \pi r^2 h\)

\(81 \pi = \pi r^2 h\)

\(r^2 h = 81\)

\(h = \dfrac{81}{r^2}\)

Cost of cake = Frosting cost + Filling cost

\(= (\pi r^2 * 10) + (2 \pi r h * 10) + \pi r^2 . 20\)

$ = 10 π r2 + 20 π r h + 20 π r2$

\(= 30 \pi r^2 + 20 \pi r \dfrac{81}{r^2}\)

\(f(r) = 30 \pi r^2 + \dfrac{1620 \pi}{r}\)

Domain: \((0, \infty)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms r p
f = 30*p*r^2 + (1620*p/r)

df = simplify(diff(f,r))
solve(df == 0, r)

I'm using the symbol \(p\) instead of \(\pi\) to make calculuations simpler.

octave> octave> f = (sym)

        2   1620⋅p
  30⋅p⋅r  + ──────
              r
octave> df = (sym)

       ⎛ 3     ⎞
  60⋅p⋅⎝r  - 27⎠
  ──────────────
         2
        r
ans = (sym 3×1 matrix)

  ⎡     3      ⎤
  ⎢            ⎥
  ⎢  3   3⋅√3⋅ⅈ⎥
  ⎢- ─ - ──────⎥
  ⎢  2     2   ⎥
  ⎢            ⎥
  ⎢  3   3⋅√3⋅ⅈ⎥
  ⎢- ─ + ──────⎥
  ⎣  2     2   ⎦

We know that the critical number is \(3\). Now let's confirm that the function attains the local minima at the number:

dfh = function_handle(df)
[dfh(pi, 2), dfh(pi, 4)]
dfh =

@(p, r) 60 * p .* (r .^ 3 - 27) ./ r .^ 2
ans =

  -895.35   435.90

So we can confirm that \(3\) is infact the local minima for the function. Now let's compute the height of the cake:

h = 81/r^2
hh = function_handle(h)

hh(3)
h = (sym)

  81
  ──
   2
  r
hh =

@(r) 81 ./ r .^ 2
octave> ans =  9

So the dimensions of the cake to minimize the cost of filling and frosting should be cake of height \(9\) inches and radius should be \(3\) inches.

1.12 Solution 12

Curve equation: \(y = \dfrac{4}{x}\)

We need to find points on the above curve that are closes to \((0,0)\)

Let \((x_1, y_1)\) be an arbitrary point in the curve.

So, \((x_1, \dfrac{4}{x_1})\) is the arbitrary point in the curve.

Distance between \((0,0)\) and \((x_1, \dfrac{4}{x_1})\)

\(= \sqrt{(x_1 - 0)^2 + (\dfrac{4}{x_1} - 0)^2}\)

\(f(x)= \sqrt{(x - 0)^2 + (\dfrac{4}{x} - 0)^2}\)

\(f(x) = \sqrt{x^2 + \dfrac{16}{x^2}}\)

We need to find the local minimal for the function:

Domain: \((-\infty, \infty)\)

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms x

f = sqrt(x^2 + (16/x^2))
df = simplify(diff(f,x))

solve(df==0, x)
octave> octave> octave> f = (sym)

       _________
      ╱  2   16
     ╱  x  + ──
    ╱         2
  ╲╱         x
df = (sym)

        4
       x  - 16
  ──────────────────
           _________
          ╱  4
   3     ╱  x  + 16
  x ⋅   ╱   ───────
       ╱        2
     ╲╱        x
octave> ans = (sym 4×1 matrix)

  ⎡ -2 ⎤
  ⎢    ⎥
  ⎢ 2  ⎥
  ⎢    ⎥
  ⎢-2⋅ⅈ⎥
  ⎢    ⎥
  ⎣2⋅ⅈ ⎦

So we have two numbers within the domain which are critical numbers for the function. Let's find out which one is the local minima:

dfh = function_handle(df)
[dfh(-3), dfh(-1), dfh(1), dfh(3)]
dfh =

@(x) (x .^ 4 - 16) ./ (x .^ 3 .* sqrt ((x .^ 4 + 16) ./ x .^ 2))
ans =

  -0.73331   3.63803  -3.63803   0.73331

So both \(-2\) and \(2\) are local minima. Let's find the corresponding y co-ordinates:

y = 4/x
yh = function_handle(y)

[yh(-2), yh(2)]
y = (sym)

  4
  ─
  x
yh =

@(x) 4 ./ x
octave> ans =

  -2   2

So the corrdinates are \((-2,2)\) and \((2,2)\) and they are the closest to the origin from the curve.

Reference formula used above.

1.13 Solution 13

We need to find shortest board to go from the ground over the wall of the building.

c4s6a13.jpg

Using similar triangle property,

\(\dfrac{h}{x} = \dfrac{1}{x-8}\)

\(h = \dfrac{x}{x-8}\)

Board = \(\sqrt{x^2 + h^2} = \sqrt{x^2 + \dfrac{x^2}{(x-8)^2}}\)

\(f(x) = \sqrt{x^2 + \dfrac{x^2}{(x-8)^2}}\)

Domain: \((0, \infty)\)

We need to find the local minima for the function.

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms x

f = sqrt(x^2 + (x^2/(x-8)^2))
df = simplify(diff(f,x))

solve(df==0, x)
octave> octave> octave> f = (sym)

        _______________
       ╱          2
      ╱   2      x
     ╱   x  + ────────
    ╱                2
  ╲╱          (x - 8)
df = (sym)

             ⎛       3    ⎞
           x⋅⎝(x - 8)  - 8⎠
  ──────────────────────────────────
        ___________________
       ╱  2 ⎛       2    ⎞
      ╱  x ⋅⎝(x - 8)  + 1⎠         3
     ╱   ───────────────── ⋅(x - 8)
    ╱                2
  ╲╱          (x - 8)
octave> ans = (sym 3×1 matrix)

  ⎡   10   ⎤
  ⎢        ⎥
  ⎢7 - √3⋅ⅈ⎥
  ⎢        ⎥
  ⎣7 + √3⋅ⅈ⎦

We select the number \(10\) since it's part of the domain. Let's confirm that it's the local minima for the function:

dfh = function_handle(df)
[dfh(9), dfh(11)]
dfh =

@(x) x .* ((x - 8) .^ 3 - 8) ./ (sqrt (x .^ 2 .* ((x - 8) .^ 2 + 1) ./ (x - 8) .^ 2) .* (x - 8) .^ 3)
ans =

  -4.94975   0.66759

That confirms that \(10\) is local minima for the function. Now let's find the dimension of the board:

fh = function_handle(f)
fh(10)
fh =

@(x) sqrt (x .^ 2 + x .^ 2 ./ (x - 8) .^ 2)
ans =  11.180
octave> ans =  11.180

1.14 Solution 14

Cylindrical metal can's volume = V

Surface area of cone = SA of top and bottom + SA of the side

\(= \pi r^2 + \pi r^2 + 2\pi r h\)

\(= 2\pi r^2 + 2\pi r h\)

$r = $ Radius of can

$h = $ Height of can

We need to find dimension to minimize the amount of metal needed to make the can. So the SA should be minimum.

\(V = \pi r^2 h\)

\(h = \dfrac{V}{\pi r^2}\)

\(SA = 2\pi r^2 + 2\pi r h\)

\(= 2 \pi r^2 + \dfrac{2 \pi r V}{\pi r^2}\)

\(= 2\pi r^2 + \dfrac{2 V}{r}\)

Domain: \((0, \infty)\)

We need to find the local minima for the above function.

clear
pkg load symbolic
syms r V

f = 2*pi*r^2 + (2*V/r)
df = simplify(diff(f,r))

solve(df==0,r)
octave> octave> octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
    double_to_sym_heuristic at line 50 column 7
    sym at line 379 column 13
    mtimes at line 63 column 5
f = (sym)

  2⋅V        2
  ─── + 2⋅π⋅r
   r
df = (sym)

    2⋅V
  - ─── + 4⋅π⋅r
      2
     r
octave> ans = (sym 3×1 matrix)

  ⎡       2/3 3 ___       ⎤
  ⎢      2   ⋅╲╱ V        ⎥
  ⎢      ──────────       ⎥
  ⎢         3 ___         ⎥
  ⎢       2⋅╲╱ π          ⎥
  ⎢                       ⎥
  ⎢ 2/3 3 ___             ⎥
  ⎢2   ⋅╲╱ V ⋅(-1 + √3⋅ⅈ) ⎥
  ⎢────────────────────── ⎥
  ⎢         3 ___         ⎥
  ⎢       4⋅╲╱ π          ⎥
  ⎢                       ⎥
  ⎢  2/3 3 ___            ⎥
  ⎢-2   ⋅╲╱ V ⋅(1 + √3⋅ⅈ) ⎥
  ⎢───────────────────────⎥
  ⎢          3 ___        ⎥
  ⎣        4⋅╲╱ π         ⎦

Now the easiest way to confirm if the first value of the above matrix is local minima is to use the second derivative test.

ddf = simplify(diff(f,r,r))
ddf = (sym)

  4⋅V
  ─── + 4⋅π
    3
   r

Since both \(V\) and \(r\) is positive, we know that the second derivative is positive. And hence we know that the first value of the matrix is a local minima.

So \(r = \dfrac{2^{-1/3}\sqrt[3]{V}}{\sqrt[3]{\pi}}\)

Let's find it's height:

\(h = \dfrac{V}{\pi r^2}\)

\(= \dfrac{ V * \pi^{2/3}}{\pi * (2^{-1/3})^2 V^{2/3}}\)

\(= \dfrac{\sqrt[3]{V}}{\sqrt[3]{\pi}} (2^{1/3})^2\)

\(= \dfrac{\sqrt[3]{4}\sqrt[3]{V}}{\sqrt[3]{\pi}}\)

\(\dfrac{h}{r} = \dfrac{\sqrt[4]{3} \sqrt[3]{V} \sqrt[3]{\pi}}{\sqrt[3]{\pi} * 2^{-1/3} * \sqrt[3]{V}}\)

\(= \dfrac{3\sqrt{4}}{2^{-1/3}} = \dfrac{2^{2/3}}{2^{-1/3}} = 2^{2/3}.2^{1/3} = 2\)

\(\dfrac{h}{r} = 2\)

\(h = 2r = d\)

Hence proved.

Reference: Similar problem

1.15 Solution 15

Volume of can \(= 32 \pi cubic inches\)

SA of can \(= 2\pi r^2 + 2\pi r h\)

\(\pi r^2 h = 32 \pi\)

\(r^2 h = 32\)

\(h = \dfrac{32}{r^2}\)

We need to find the point whre the function attains local minima.

\(SA = 2\pi r (h + 2r)\)

\(= 2\pi r(\dfrac{32}{r^2} + 2r)\)

Domain: \((0, 32 \pi)\)

In the above equation we have \((h+2r)\) because \(h\) is the height of the cylinder and the \(2r\) is the approximation of the additional wrapping paper required to cover top and bottom.

Let's write GNU Octave code to solve this further:

clear
pkg load symbolic
syms r
f = 2*pi*r*(32/r^2 + 2*r)

df = simplify(diff(f,r))
solve(df==0, r)
octave> octave> warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
    double_to_sym_heuristic at line 50 column 7
    sym at line 379 column 13
    mtimes at line 63 column 5
f = (sym)

        ⎛      32⎞
  2⋅π⋅r⋅⎜2⋅r + ──⎟
        ⎜       2⎟
        ⎝      r ⎠
octave> df = (sym)

      ⎛ 3    ⎞
  8⋅π⋅⎝r  - 8⎠
  ────────────
        2
       r
ans = (sym 3×1 matrix)

  ⎡    2    ⎤
  ⎢         ⎥
  ⎢-1 - √3⋅ⅈ⎥
  ⎢         ⎥
  ⎣-1 + √3⋅ⅈ⎦

Now let's check if the first value in the matrix is where the function attains it's local minima:

dfh = function_handle(df)
[dfh(1), dfh(3)]
dfh =

@(r) 8 * pi * (r .^ 3 - 8) ./ r .^ 2
ans =

  -175.929    53.058

That confirms that it attains local minima there. Let's compute the height of the cylinder:

h = 32/(r^2)
hh = function_handle(h)

[hh(2)]
h = (sym)

  32
  ──
   2
  r
hh =

@(r) 32 ./ r .^ 2
octave> ans =  8

So the dimension of the cylinder is \(2\) inches radius and \(8\) inches height.

1.16 Solution 16

Right triangle wikipedia page to understand what legs mean in the question.

https://www.youtube.com/watch?v=2keGgDBJKGU

c4s6a16.jpg

We need to find smallest possible area for the triangle.

\(Area = \dfrac{1}{2}ab\)

\(P = (x_1, y_1)\)

\(2(x_1)^2 + (y_1)^2 = 1\)

\(y_1 = \sqrt{1-(2x_1)^2}\)

\(P = (x_1, \sqrt{1 - 2(x_1)^2})\)

The full answer is in the Match stackexchange question

clear
pkg load symbolic
syms b
f = b^2/(2*sqrt(2*(b^2 - 1)))

df = simplify(diff(f,b))
solve(df == 0, b)
octave> octave> f = (sym)

          2
         b
  ───────────────
       __________
      ╱    2
  2⋅╲╱  2⋅b  - 2
octave> df = (sym)

       ⎛ 2    ⎞
  √2⋅b⋅⎝b  - 2⎠
  ─────────────
            3/2
    ⎛ 2    ⎞
  4⋅⎝b  - 1⎠
ans = (sym 3×1 matrix)

  ⎡ 0 ⎤
  ⎢   ⎥
  ⎢-√2⎥
  ⎢   ⎥
  ⎣√2 ⎦

We can ignore the first value since the dimension cannot be zero. We can ignore the second answer since the dimension should be positive.

dfh = function_handle(df)

[dfh(1.3), dfh(1.5)]
dfh =

@(b) sqrt (2) * b .* (b .^ 2 - 2) ./ (4 * (b .^ 2 - 1) .^ (3 / 2))
octave> ans =

  -0.248592   0.094868

So at \(\sqrt{2}\), it achieves local minima. Let's find the other dimension:

fh = function_handle(f)
fh(sqrt(2))
fh =

@(b) b .^ 2 ./ (2 * sqrt (2 * b .^ 2 - 2))
ans =  0.70711

Now let's compute the smallest possible area:

fh(sqrt(2))
ans =  0.70711

https://math.stackexchange.com/a/4016304/124772