UP | HOME

1 Concavity

1.1 Solution 1

1.1.1 Solution a

Property Interval
Concave up \([r,s], [s,t], [u,v]\)
Concave down \([p,q], [q,r], [t,v]\)
Inflection point r,t,v

1.1.2 Solution b

Property Interval/Points
Concave up \([r,s],[s,t],[t,u],[u,v]\)
Concave down \([p,q],[q,r],[v,w]\)
Inflection point r,v

1.2 Solution 2

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot x**3 - 3*(x**2) + 3 title "x^3 - 3x^2 + 3" ls 1

c4_4s2.png

\(f(x) = x^3 - 3x^2 + 3\)

Domain: \((-\infty, \infty)\)

\(f'(x) = 3x^2 - 6x\)

There are no points where \(f\) is not differentiable but there are two points where the derivative is \(0\).

\(x=0,2\)

\(f''(x) = 6x-6\)

Notice that \(f, f', f''\) are all continous everywhere. Clearly \(f'(x) = 0\) when \(x=0,2\). \(f''(x) = 0\) when \(x=1\)

Now let's test sample points:

Function Value
f'(-1) 9 > 0
f'(1) -3 < 0
f'(3) 9 > 0
f''(0) -6 < 0
f''(2) 6 > 0

c4s2nucompressed.png

Property Value
\((-\infty, 0]\) Strictly increasing, concave down
\([0,2]\) Strictly decreasing, concave up and down
\([2,\infty)\) Strictly increasing, concave up
Inflection point 1
Local maxima 0
Local minima 2

1.3 Solution 3

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "g(x)"
set grid
set key right top
plot x**3 - 6*(x**2) - 15*x - 20 title "x^3 + 6x^2 -15x - 20" ls 1

c4_4s3.png

\(g(x) = x^3 + 6x^2 - 15x - 20\)

Domain: \((-\infty, \infty)\)

\(g'(x) = 3x^2 + 12x - 15\)

\(g''(x) = 6x + 12\)

Notice that \(g, g', g''\) are all continous everywhere. \(g'(x) = 0\) where \(x = -5, 1\). \(g''(x) = 0\) when \(x=-2\).

Now let's test sample points:

Function Value
g'(-6) 21 > 0
g'(-4) -15 < 0
g'(0) -15 < 0
g'(2) 21 > 0
g''(-3) -6 < 0
g''(-1) 6 > 0

c4s3nucompressed.png

Property Value
\((-\infty, -5]\) Strictly increasing
\([-5,1]\) Strictly decreasing
\([1,\infty)\) Strictly increasing
Inflection point -2
Local maxima -5
Local minima 1
\((-\infty, -2]\) Concave down
\([-2, \infty)\) Concave up

1.4 Solution 4

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot ((x**4)/4) - ((2*(x**3))/3) - ((15*(x**2))/2) title "x^4/4 - 2x^3/3 - 15x^2/2" ls 1

c4_4s4.png

\(f(x) = \dfrac{x^4}{4} - \dfrac{2x^3}{3} - \dfrac{15x^2}{2}\)

\(f'(x) = x^3 - 2x^2 - 15x\)

\(f''(x) = 3x^2 - 4x - 15\)

Notice that \(f, f', f''\) are all continous everywhere. \(f'(x) = 0\) when \(x=-3,0,5\). \(f''(x) = 0\) when \(x=\dfrac{-5}{3}, 3\).

Now let's test sample points:

Function Value
f'(-4) -36 < 0
f'(-2) 14 < 0
f'(1) -16 < 0
f'(4) -28 > 0
f'(6) 54 < 0
f''(-2) 5 > 0
f''(-1) -8 < 0
f''(2) -11 < 0
f''(4) 17 > 0

c4s4nucompressed.png

Property Value
\((-\infty, -3]\) Strictly decreasing
\([-3,0]\) Strictly increasing
\([0,5]\) Strictly decreasing
\([5,\infty)\) Strictly increasing
\((-\infty, -5/3]\) Concave up
\([-5/3, 3]\) Concave down
\([3, \infty)\) Concave up

1.5 Solution 5

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot ((x**5)/5) - (x**4) + 20 title "x^5/5 - x^4 + 20" ls 1

c4_4s5.png

\(f(x) = \dfrac{x^5}{5} - x^4 + 20\)

\(f'(x) = x^4 - 4x^3\)

\(f''(x) = 4x^3 - 12x^2\)

Notice that \(f, f', f''\) are all continous everywhere. \(f'(x) = 0\) when \(x=0,4\). \(f''(x) = 0\) when \(x=0,3\).

Now let's test sample points:

Function Value
f'(-1) 5 > 0
f'(1) -3 < 0
f'(3) -27 < 0
f'(5) 125 > 0
f''(-1) -16 < 0
f''(1) -8 < 0
f''(2) -16 < 0
f''(4) 64 > 0

c4s5nucompressed.png

Property Value
\((-\infty, 0]\) Strictly increasing
\([0,4]\) Strictly decreasing
\([4,\infty)\) Strictly increasing
\((-\infty,3]\) Concave down
\([3, \infty)\) Concave up
Local maximum 0
Local minimum 4
Inflection point 3

1.6 Solution 6

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "g(x)"
set grid
set key right top
plot (-(x**3))*(x+4) title "-x^3(x+4)" ls 1

c4_4s6.png

\(g(x) = -x^3(x+4)\)

Domain: \((-\infty, \infty)\)

\(g(x) = -x^4 - 4x^3\)

\(g'(x) = -4x^3 - 12x^2\)

\(g''(x) = -12x^2 - 24x\)

Notice that \(g, g', g''\) are all continous everywhere. \(g'(x) = 0\) when \(x=-3,0\). \(g''(x) = 0\) when \(x=-2,0\).

Now let's test sample points:

Function Value
g'(-4) 64 > 0
g'(-2) -16 < 0
g'(-1) -8 < 0
g'(1) -16 > 0
g''(-3) 396 > 0
g''(-1) 36 > 0
g''(1) 36 < 0

c4s6nucompressed.png

Property Value
\((-\infty, -3]\) Strictly increasing
\([-3,\infty)\) Strictly decreasing
\((-\infty, 0]\) Concave up
\([0, \infty)\) Concave down
Local maximum -3
Local minimum None
Inflection point 0

1.7 Solution 7

\(f(x) = \sqrt[3]{x}\)

From theorem 2.7.8, \(f(x)\) is continous on \((-\infty, \infty)\).

Domain: \((-\infty, \infty)\)

\(f'(x) = \dfrac{1}{3}x^{-2/3}\)

\(f''(x) = \dfrac{-2}{9} x^{-5/3}\)

Critical number of \(f\) is \(0\) since \(f'(x)\) is not defined at \(0\).

\(f\) is continous on interval \((-\infty, 0]\) and differentiable on the interior of the interval.

Appying theorem 4.4.3, we know that \(f''(x) > 0\). Hence \(f\) is concave up on \((\-infty, 0]\). With similar reasoning, one can deduce that it is concave down on \([0, \infty)\)

Function Value
f'(-1) 1
f'(1) 1

So, \(f\) is strictly increasing on \((-\infty, \infty)\).

1.8 Solution 8

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "g(x)"
set grid
set key right top
plot (x**2) + sqrt(x) title "x^2 + sqrt(x)" ls 1

c4_4s8.png

\(g(x) = x^2 + \sqrt{x}\)

From theorem 2.7.8, \(\sqrt{x}\) is continous on \([0, \infty)\)

So, the domain of \(g(x)\) is \([0, \infty)\)

\(g'(x) = 2x + \dfrac{1}{2\sqrt{x}}\)

\(g''(x) = 2 + \dfrac{1}{2}x^{-3/2} = 2 + \dfrac{1}{2x^{3/2}}\)

\(g'(x) = 0\) when \(x = \emptyset\). \(g''(x)\) is not defined when \(x=0\). Applying theorem 4.4.3, we know that \(g''(x) > 0\) for interior of \([0, \infty)\).

Property Value
\([0,\infty)\) Concave up
\([0, \infty)\) Strictly increasing

1.9 Solution 9

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot 3*(x**(1.666)) - 5*x title "3x^(5/3) - 5x" ls 1

c4_4s9.png

\(f(x) = 3x^{5/3} - 5x\)

\(f'(x) = 5x^{2/3} - 5\)

\(f''(x) = \dfrac{10}{3}x^{-1/3} = \dfrac{10}{3x^{1/3}}\)

Domain: \((-\infty, \infty)\)

\(f'(x) = 0\) when \(x=1,-1\). \(f''(x) = 0\) is undefined. Let's try to find when \(f''(x) > 0\) and \(f''(x) < 0\)

\(f''(x) = \dfrac{10}{3x^{1/3}}\)

So for any negative number it will be \(f''(x) < 0\) and for any positive number it will be \(f''(x) < 0\).

Property Value
Concave up (-∞, 0]
Concave down [0, ∞)
Function Value
f'(-1) 0
f'(0) -5 < 0
f'(-2) 2.937 > 0
f'(2) 2.937 > 0

c4s9nucompressed.png

Property Value
\((-\infty, -1]\) Strictly increasing
\([-1, 1]\) Strictly decreasing
\([1,\infty)\) Strictly increasing

1.10 Solution 10

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot 1/(x**2 + 3) title "1/(x^2 + 3)" ls 1

c4_4s10.png

\(f(x) = \dfrac{1}{x^2+3} = (x^2 + 3)^{-1}\)

\(f'(x) = -(x^2+3)^{-2}(2x)\)

\(= \dfrac{2x}{(x^2+3)^2}\)

\(f''(x) = -(2x)(x^2+3)^{-3}.-2.2x + (x^2+3)^{-2}.-2\)

\(= 8x^2(x^2+3)^{-3}-2(x^2 + 3)^{-2}\)

\(= \dfrac{8x^2}{(x^2+3)^3} - \dfrac{2}{(x^2+3)^2}\)

\(= \dfrac{8x^2}{(x^2+3)^3} - \dfrac{2(x^2+3)}{(x^2+3)^3}\)

\(= \dfrac{8x^2-2x^2-6}{(x^2+3)^3}\)

\(= \dfrac{6x^2-6}{(x^2+3)^3}\)

\(f'(x) = 0\) when \(x =0\)

\(f''(x) = 0\) when \(x=1,-1\)

Function Value
f'(-1) 0.125 > 0
f'(1) -0.125 < 0
f''(0) -0.22 < 0
f''(2) 0.05 > 0
f''(-2) 0.05 > 0

c4s10nucompressed.png

Property Value
\((-\infty, 0]\) Strictly increasing
\([0,\infty)\) Strictly decreasing
\((-\infty,1]\) Concave down
\([1, \infty)\) Concave up

1.11 Solution 11

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot x/(x**2 + 3) title "x/(x^2 + 3)" ls 1

c4_4s11.png

\(f(x) = \dfrac{x}{x^2+3}\)

\(f(x) = x(x^2+3)^{-1}\)

\(f'(x) = x.-1.(x^2+3)^{-2}.2x + (x^2+3)^{-1}\)

\(= \dfrac{-2x^2}{(x^2+3)^2} + \dfrac{1}{x^2+3}\)

\(= \dfrac{3-x^2}{(x^2+3)^2}\)

\(f''(x) = (3-x^2).-2(x^2+3)^{-3}.2x + (x^2+3)^{-2}(-2x)\)

\(= \dfrac{-4x(3-x^2)}{(x^2+3)^3} - \dfrac{2x}{(x^2+3)^2}\)

\(= \dfrac{-12x+4x^3-2x^3-6x}{(x^2+3)^3}\)

\(= \dfrac{2x^3-18x}{(x^2+3)^3}\)

\(= \dfrac{2x(x^2-9)}{(x^2+3)^3}\)

\(f'(x) = 0\) when \(x= \sqrt[3]{3}, -\sqrt[3]{3}\). \(f''(x) = 0\) when \(x=0,3,-3\).

Function Value
f'(1) 0.125 > 0
f'(2) -0.02 < 0
f'(-1) 0.125 > 0
f'(-2) -0.02 < 0
f''(-1) 0.25 > 0
f''(1) -0.25 < 0
f''(2) -0.05 < 0
f''(-2) 0.05 > 0
f''(4) 0.008 > 0
f''(-4) -0.008 < 0

c4s11nucompressed.png

Property Value
\([-\sqrt[3]{3},\sqrt[3]{3}]\) Strictly increasing
\((-\infty, -\sqrt[3]{3}]\) Strictly decreasing
\([\sqrt[3]{3}, \infty)\) Strictly decreasing
\([-3,0], [3, \infty)\) Concave up
\((-\infty, -3], [0,3]\) Concave down
\(-\sqrt[3]{3}\) Local minima
\(-\sqrt[3]{3}\) Local maxima
-3,0,3 Inflection point

1.12 Solution 12

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot (x**2)/(x**2 + 3) title "x^2/(x^2 + 3)" ls 1

c4_4s12.png

\(f(x) = \dfrac{x^2}{x^2+3}\)

\(f(x) = x^2(x^2+3)^{-1}\)

\(f'(x) = x^2.-1(x^2+3)^{-2}.2x + (x^2+3)^{-1}.2x\)

\(= \dfrac{-2x^3}{(x^2+3)^2} + \dfrac{2x}{x^2+3}\)

\(= \dfrac{-2x^3}{(x^2+3)^2} + \dfrac{2x^3 + 6x}{(x^2+3)^2}\)

\(= \dfrac{6x}{(x^2+3)^2}\)

\(f''(x) = (x^2+3)^{-2}.6 + 6x.-2(x^2+3)^{-3}.2x\)

\(= \dfrac{6}{(x^2+3)^2} + \dfrac{12x^2.-2}{(x^2+3)^3}\)

\(= \dfrac{6}{(x^2+3)^2} - \dfrac{24x^2}{(x^2+3)^3}\)

\(= \dfrac{6x^2 + 18 - 24x^2}{(x^2+3)^3}\)

\(= \dfrac{18 - 18x^2}{(x^2+3)^3}\)

\(f'(x) = 0\) when \(x=0\)

\(f''(x) = 0\) when \(x=1,-1\)

(defun singleDerivative (x)
(let* ((num (* 6 x))
      (den (expt (+ (expt x 2) 3) 2))
      (res (/ num den)))
  res)
  )
singleDerivative
(singleDerivative -1.0)
-0.375
(singleDerivative 1.0)
0.375
(defun doubleDerivative (x)
  (let* ((num (- 18 (* 18 (expt x 2))))
          (den (expt (+ (expt x 2) 3) 3))
          (res (/ num den)))
  res
    ))
doubleDerivative
(doubleDerivative 0.0)
0.6666666666666666
(doubleDerivative 2.0)
-0.15743440233236153
(doubleDerivative -2.0)
-0.15743440233236153
Function Value
f'(-1) -0.0375 < 0
f'(1) 0.375 > 0
f''(0) 0.666 > 0
f''(2) -0.15 < 0
f''(-2) -0.15 < 0

c4s12nucompressed.png

Property Value
\([0,\infty)\) Strictly increasing
\((-\infty, 0]\) Strictly decreasing
0 Local minima
\([-1,1]\) Concave up
\((-\infty, -1], [1, \infty)\) Concave down
\(-1,1\) Inflection points

1.13 Solution 13

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot (x**3)/(x**2 + 3) title "x^3/(x^2 + 3)" ls 1

c4_4s13.png

\(g(x) = \dfrac{x^3}{x^2+3}\)

\(g(x) = x^3(x^2+3)^{-1}\)

Domain: \((-\infty, \infty)\)

\(g'(x) = 3x^2(x^2+3)^{-1} + x^3.-1(x^2+3)^{-2}.23x\)

\(= \dfrac{3x^2}{x^2+3} - \dfrac{2x^4}{(x^2+3)^2}\)

\(= \dfrac{3x^4 + 9x^2 - 2x^4}{(x^2+3)^2}\)

\(= \dfrac{x^4 + 9x^2}{(x^2+3)^2}\)

\(g''(x) = -2(x^2+3)^{-3}.2x(x^4+9x^2) + \dfrac{4x^3+18x}{(x^2+3)^2}\)

\(= \dfrac{-4x(x^4+9x^2)}{(x^2+3)^3} + \dfrac{4x^3+18x}{(x^2+3)^2}\)

\(= \dfrac{-4x^2(x^3+9x)}{(x^2+3)^3} + \dfrac{(4x^3 + 18x)(x^2+3)}{(x^2+3)^3}\)

\(= \dfrac{-4x^5-36x^3 + 4x^5 + 30x^3 + 54x}{(x^2+3)^3}\)

\(= \dfrac{54x-6x^3}{(x^2+3)^3}\)

\(= \dfrac{6x(9-x^2)}{(x^2+3)^3}\)

\(f'(x) = 0\) when \(x=0\). \(f''(x) = 0\) when \(x=-3,0,3\)

(defun singleDerivative (x)
  (let* ((num (+ (expt x 4) (* 9 (expt x 2))))
         (den (expt (+ (expt x 2) 3) 2))
          (res (/ num den)))
  res
    ))
singleDerivative
(singleDerivative -1.0)
0.625
(singleDerivative 1.0)
0.625
(defun doubleDerivative (x)
  (let* ((num (* 6 x (- 9 (expt x 2))))
         (den (expt (+ (expt x 2) 3) 3))
          (res (/ num den)))
  res
    ))
doubleDerivative
(doubleDerivative -4.0)
0.024493366379938767
(doubleDerivative -2.0)
-0.1749271137026239
(doubleDerivative -1.0)
-0.75
(doubleDerivative 1.0)
0.75
(doubleDerivative 2.0)
0.1749271137026239
(doubleDerivative 4.0)
-0.024493366379938767
Function Value
f'(-1) 0.625 > 0
f'(1) 0.625 > 0
f''(-4) 0.02 > 0
f''(-2) -0.17 < 0
f''(-1) -0.75 < 0
f''(1) 0.75 > 0
f''(2) 0.17 > 0
f''(4) -0.02 < 0

c4s13nucompressed.png

Property Value
Strictly increasing \((-\infty, \infty)\)
Concave up \((-\infty, -3], [0,3]\)
Concave down \([-3,0], [3,\infty)\)
Inflection point -3,0,3

1.14 Solution 14

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot (16*((x**2)+1)**(0.5)) - (x**2) title "16(x^2+1)^{0.5} - x^2" ls 1

c4_4s14.png

\(f(x) = 16\sqrt{x^2+1} - x^2\)

\(f(x) = 16(x^2+1)^{1/2} - x^2\)

\(f'(x) = 8(x^2+1)^{-1/2}.2x - 2x\)

\(= \dfrac{16x}{\sqrt{x^2+1}} - 2x\)

\(f''(x) = \dfrac{16}{\sqrt{x^2+1}} + 16x.-\dfrac{1}{2}(x^2+1)^{-3/2}.2x - 2\)

\(= \dfrac{16}{\sqrt{x^2+1}} - \dfrac{8x.2x}{(x^2+1)^{3/2}} - 2\)

\(= \dfrac{16x^2+16-16x}{(x^2+1)^{3/2}} - 2\)

\(- \dfrac{16}{(x^2+1)^{3/2}} - 2\)

\(f'(x) = 0\) when \(x=0, 3\sqrt{7}, -3\sqrt{7}\). \(f''(x) = 0\) when \(x=-\sqrt{2}, \sqrt{2}\)

(defun singleDerivative (x)
  (let* ((num (* 16 x))
         (den (sqrt (+ (expt x 2) 1)))
         (res (/ num den))
         (sol (- res (* 2 x))))
  sol
    ))
singleDerivative
(singleDerivative -1.0)
-9.31370849898476
(singleDerivative 1.0)
9.31370849898476
(singleDerivative 6.0)
3.7823027813143
(singleDerivative 8.0)
-0.12355397258131617
(singleDerivative -6.0)
-3.7823027813143
(singleDerivative -8.0)
0.12355397258131617
(defun doubleDerivative (x)
  (let* ((num 16)
         (den (expt (+ 1 (expt x 2)) 1.5))
         (res (/ num den))
         (sol (- res 2)))
  sol
    ))
doubleDerivative
(doubleDerivative 0.0)
14.0
(doubleDerivative 2.0)
-0.5689164944001346
(doubleDerivative -2.0)
-0.5689164944001346
Function Value
f'(-1) -9.31 < 0
f'(1) 9.31 > 0
f'(6) 3.78 > 0
f'(8) -0.12<0
f'(-6) -3.7 < 0
f'(-8) 0.12 > 0
f''(0) 14 > 0
f''(2) -0.56 < 0
f''(-2) -0.56 < 0

c4s14nucompressed.png

Property Value
Strictly increasing \([0, 3\sqrt{7}], (-\infty, -3\sqrt{7}]\)
Strictly decreasing \([-3\sqrt{7}, 0], [3\sqrt{7}, \infty)\)
Concave up \([-\sqrt{3}, \sqrt{3}]\)
Concave down \((-\infty, -\sqrt{3}], [\sqrt{3}, \infty)\)
Inflection point \(\sqrt{3}, -\sqrt{3}\)

1.15 Solution 15

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot (x + 2*sin(x)) title "x + 2sin(x)" ls 1

c4_4s15.png

\(f(x) = x + 2\sin x\)

Domain: \([0, 2\pi]\)

\(f'(x) = 1 + 2\cos x\)

\(f''(x) = -2\sin x\)

\(f'(x) = 0\) when \(x = \dfrac{4\pi}{3}, \dfrac{2\pi}{3}\)

\(f''(x) = 0\) when \(x = 0, \pi, 2\pi\)

(defun singleDerivative (x)
  (let* ((num (+ 1 (* 2 (cos x)))))
  num
    ))
singleDerivative
(singleDerivative pi)
-1.0
(singleDerivative (* 2 pi))
3.0
(singleDerivative 0)
3.0
(singleDerivative (* 1.5 pi))
0.9999999999999997
(defun doubleDerivative (x)
  (let* ((num (* -2 (* 2 (sin x)))))
  num
    ))
doubleDerivative
(doubleDerivative pi)
-4.898587196589413e-16
(doubleDerivative 0)
-0.0
(doubleDerivative (* 1.5 pi))
4.0
(doubleDerivative (/ (* 2 pi) 3))
-3.464101615137755
(doubleDerivative (/ (* 4 pi) 3))
3.4641016151377535
Function Value
\(f'(\pi)\) -1 < 0
\(f'(1.5\pi)\) 1 > 0
\(f'(2\pi)\) 3 > 0
f'(0) 3 > 0
\(f''(\pi)\) 0
\(f''(1.5\pi)\) 4 > 0
\(f''(\dfrac{2\pi}{3})\) -3.4 < 0
\(f''(\dfrac{4\pi}{3})\) 3.4 > 0

c4s15nucompressed.png

Property Value
Strictly increasing \([0, \dfrac{2\pi}{3}], [\dfrac{4\pi}{3}, 2\pi]\)
Strictly decreasing \([\dfrac{2\pi}{3}, \dfrac{4\pi}{3}]\)
Concave up \([0, \pi]\)
Concave down \([\pi, 2\pi]\)
Inflection point \(\pi\)
Local minima \(\dfrac{4\pi}{3}\)
Local maxima \(\dfrac{2\pi}{3}\)

1.16 Solution 16

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "g(x)"
set grid
set key right top
plot [0 : 2*pi] (x**2 + 4*sin(x)) title "x^2 + 4sin(x)" ls 1

c4_4s16.png

\(g(x) = x^2 + 4\sin x\)

Domain: \([0, 2\pi]\)

\(g'(x) = 2x + 4\cos x\)

\(g''(x) = 2 - 4\sin x\)

\(g'(x) \neq 0\) on \([0, 2\pi]\)

\(g''(x) = 0\) when \(x = \dfrac{\pi}{6}, \dfrac{5\pi}{6}\)

(defun doubleDerivative (x)
  (let* ((num (- 2 (* 4 (sin x)))))
  num
    ))
doubleDerivative
(doubleDerivative 0.0)
2.0
(doubleDerivative (/ pi 2.0))
-2.0
(doubleDerivative pi)
1.9999999999999996
Function Value
g''(0) 2 > 0
\(g''(\dfrac{\pi}{2})\) -2 < 0
\(g''(\pi)\) 2 > 0
\(g'(\pi)\) 2.28 > 0

c4s16nucompressed.png

Property Value
Strictly increasing \((-\infty, \infty)\)
Concave up \((-\infty, \dfrac{\pi}{6}], [\dfrac{5\pi}{6}, \pi]\)
Concave down \([\dfrac{\pi}{6}, \dfrac{5\pi}{6}]\)

1.17 Solution 17

set terminal png notransparent nointerlace rounded font "Alegreya, 14"

set xlabel "x"
set ylabel "f(x)"
set grid
set key right top
plot (3*tan(x) - 4*x) title "3tan x - 4x" ls 1

c4_4s17.png

\(f(x) = 3\tan x - 4x\)

Domain: \((-\dfrac{\pi}{2}, \dfrac{\pi}{2})\)

\(f'(x) = 3\sec^2 x - 4\)

\(f''(x) = 6\sec x \sec x \tan x = 6 \sec^2 x \tan x\)

\(f'(x) = 0\) when \(x = \dfrac{-\pi}{6}, \dfrac{\pi}{6}\)

\(f''(x) = 0\) when \(x = 0\)

Function Value
\(f'(\dfrac{\pi}{7})\) -0.3 < 0
\(f'(\dfrac{\pi}{4})\) 2 > 0
\(f'(\dfrac{-\pi}{7})\) -0.3 < 0
\(f'(\dfrac{-\pi}{4})\) 2 < 0
\(f''(\dfrac{\pi}{4})\) 12 > 0
\(f''(\dfrac{-\pi}{4})\) -12 < 0

c4s17nucompressed.png

Property Value
Strictly increasing $(-\dfrac{\pi}{2}, \dfrac{\pi}{6}], [\dfrac{\pi}{6}, \dfrac{\pi}{2}) $
Strictly decreasing \([\dfrac{-\pi}{6}, \dfrac{\pi}{6}]\)
Concave up \([0, \dfrac{\pi}{2})\)
Concave down \((\dfrac{-\pi}{2}, 0]\)
Inflection point 0
Local minimum \(\dfrac{\pi}{6}\)
Local maximum \(-\dfrac{\pi}{6}\)

1.18 Solution 18

Suppose \(f\) is concave up on interval \(I\).

\(x_1, x_2, x_3, x_4 \in I\)

\(x_1 < x_2 < x_3 < x_4\)

1.18.1 Solution a

Slope of secant line at \(x = x_1\) and \(x = x_2\)

\(m_1 = \dfrac{f(x_2) - f(x_1)}{x_2 - x_1}\)

Slope of secant line at \(x = x_3\) and \(x = x_4\)

\(m_2 = \dfrac{f(x_3) - f(x_4)}{x_3 - x_4}\)

We need to prove that \(m_1 < m_2\)

From theorem 4.4.2,

\(\dfrac{f(x_2) - f(x_1)}{x_2 - x_1} < \dfrac{f(x_3) - f(x_2)}{x_3 - x_2}\)

Also since $x2 < x3 < x4,

\(\dfrac{f(x_3) - f(x_2)}{x_3 - x_2} < \dfrac{f(x_4) - f(x_3)}{x_4 - x_3}\)

Combining both,

\(\dfrac{f(x_2) - f(x_1)}{x_2 - x_1} < \dfrac{f(x_4) - f(x_3)}{x_4 - x_3}\)

\(\dfrac{f(x_2) - f(x_1)}{x_2 - x_1} < \dfrac{f(x_3) - f(x_4)}{x_3 - x_4}\)

\(m_1 < m_2\)

1.18.2 Solution b

Slope of secant line at \(x = x_1\) and \(x = x_3\)

\(m_1 = \dfrac{f(x_3) - f(x_1)}{x_3 - x_1}\)

Slope of secant line at \(x = x_2\) and \(x = x_4\)

\(m_2 = \dfrac{f(x_4) - f(x_2)}{x_4 - x_2}\)

We need to prove that \(m_1 < m_2\)

We know that

\(c,d > 0 \land \dfrac{a}{c} < \dfrac{b}{d} \implies \dfrac{a}{c} < \dfrac{a + b}{c+d} < \dfrac{b}{d}\)

We know that \(x_1 < x_3 < x_4\)

From theorem 4.4.2,

\(\dfrac{f(x_3) - f(x_1)}{x_3 - x_1} < \dfrac{f(x_4) - f(x_3)}{x_4 - x_3}\)

Applying the inequality law,

\(\dfrac{f(x_3)-f(x_1)}{x_3 - x_1} < \dfrac{f(x_4) - f(x_1)}{x_4 - x_1} < \dfrac{f(x_4) - f(x_3)}{x_4 - x_3}\)

We know that \(x_1 < x_2 < x_4\)

From theorem 4.4.2,

\(\dfrac{f(x_2) - f(x_1)}{x_2 - x_1} < \dfrac{f(x_4) - f(x_2)}{x_4 - x_2}\)

Applying the inequality law,

\(\dfrac{f(x_2)-f(x_1)}{x_2 - x_1} < \dfrac{f(x_4) - f(x_1)}{x_4 - x_1} < \dfrac{f(x_4) - f(x_2)}{x_4 - x_2}\)

Combining both,

\(\dfrac{f(x_3)-f(x_1)}{x_3 - x_1} < \dfrac{f(x_4) - f(x_1)}{x_4 - x_1} < \dfrac{f(x_4) - f(x_2)}{x_4 - x_2}\)

\(\dfrac{f(x_3)-f(x_1)}{x_3 - x_1} < \dfrac{f(x_4) - f(x_2)}{x_4 - x_2}\)

\(m_1 < m_2\)

1.19 Solution 19

Domain of \(f\) is interval \(I\).

Domain of \(g\) is interval \(J\)

\(\forall x \in J g(x) \in I\)

1.19.1 Solution a

Suppose \(f\) is increasing on \(I\).

Suppose \(f\) is concave up on \(I\).

Suppose \(g\) is increasing on \(J\).

Suppose \(g\) is concave up on \(J\).

We need to prove that \(f \circ g\) is concave up on \(J\).

Since \(f\) is increasing. Let's assume \(x_1 < x_2 < x_3 \in I\)

\(\dfrac{f(x_2)-f(x_1)}{x_2 - x_1} < \dfrac{f(x_3) - f(x_2)}{x_3 - x_2}\)

We know that \(x_1, x_2, x_3 \in I\) and \(\forall x \in J g(x) \in I\)

So, \(x_1 = g(a)\) where a is some arbitrary element in J.

So, \(\dfrac{f(g(y_2))-f(g(y_1))}{g(y_2) - g(y_1)} < \dfrac{f(g(x_3)) - f(g(x_2))}{g(y_3) - g(y_2)}\)

where \(g(y_2) = x_2, g(y_3) = x_3, g(y_1) = x_1\) .

We know from question 22 that \(f \circ g\) is also increasing on \(J\).

So, \(g(y_1) < g(y_2) < g(y_3)\)

So, \(\dfrac{f(g(y_2))-f(g(y_1))}{g(y_2) - g(y_1)} < \dfrac{f(g(x_3)) - f(g(x_2))}{g(y_3) - g(y_2)}\)

Hence \(f \circ g\) is concave up on \(J\).

1.19.2 Solution b

Counterexample with following property:

\(f(x):\) Decreasing, Concave up

\(g(x):\) Increasing, Concave up

\(g(x) = x^4\)

\(f(x) = -2\sqrt{x}\)

Domain: \([1, \infty)\)

\(f \circ g = f(g(x)) = f(x^4) = -2\sqrt{x^4} = -2x^2\)

\(h = f \circ g = -2x^2\)

\(h'(x) = -4x\)

\(h''(x) = 04 < 0\) and therefore \(f \circ g\) is concave down.