1 The Chain Rule
1.1 Solution 1
\(f(x) = (5x-8)^{12}\)
\(f'(x) = 12(5x-8)^{11} \dfrac{d}{dx} (5x-8)\)
\(= 12(5x - 8)^{11}.5\)
\(= 60(5x-8)^{11}\)
1.2 Solution 2
\(g(x) = \sin (x^2 + 7x-9)\)
\(g'(x) = \cos (x^2 + 7x - 9) (2x+7)\)
\(= (2x+7)\cos (x^2 + 7x - 9)\)
1.3 Solution 3
\(h(x) = \sqrt{x^2 + 4}\)
\(h'(x) = \dfrac{1}{2}(x^2 + 4)^{-1/2}(2s)\)
\(= \dfrac{x}{\sqrt{x^2 + 4}}\)
1.4 Solution 4
\(f(x) = x^3 \tan (x^2 + 3x)\)
Using the product rule,
\(f'(x) = x^3 \dfrac{d}{dx}(\tan (x^2 + 3x)) + \tan(x^2 + 3x)(3x^2)\)
\(= x^3 \sec^2 (x^2 + 3x)(2x+3) + 3x^2 \tan(x^2 + 3x)\)
\(= (2x^4 + 3x^3)\sec^2 (x^2 + 3x) + 3x^2 + \tan(x^2 + 3x)\)
1.5 Solution 5
\(h(x) = \dfrac{2}{\sqrt[3]{3x+4}}\)
\(h(x) = 2(3x+4)^{-1/3}\)
\(h'(x) = 2 * \dfrac{-1}{3} * (3x + 4)^{-1/3 - 1}.*h3\)
\(= -2(3x+4)^{-4/3}\)
\(= \dfrac{-2}{(3x+4)^{4/3}}\)
\(= \dfrac{-2}{\sqrt[3]{(3x+4)^4}}\)
1.6 Solution 6
\(g(x) = \sec^3 (x^2 - 5x)\)
\(g(x) = (\sec (x^2 - 5x))^3\)
\(g'(x) = 3\sec^2 (x^2 - 5x) \dfrac{d}{dx} (\sec (x^2 - 5x))\)
\(= 3\sec^2 (x^2 - 5x) \sec (x^2 - 5x) \tan (x^2 - 5x) . 2x\)
\(= 6x \sec^3 (x^2 - 5x) \tan (x^2 - 5x)\)
1.7 Solution 7
\(f(x) = \cos^2 (3x)\)
\(f'(x) = 2\cos (3x) - \sin (3x) 3\)
\(= -6 \sin 3x \cos 3x\)
1.8 Solution 8
\(g(x) = \sqrt{\cos^2 (3x) + 1}\)
\(g'(x) = \dfrac{1}{2} (\cos^2 (3x) + 1)^{-1/2} (-6\sin 3x \cos 3x)\) (From solution 7)
\(= \dfrac{-3 \sin 3x \cos 3x}{\sqrt{\cos^2 (3x) + 1}}\)
1.9 Solution 9
\(h(x) = x\sqrt[4]{2x + 3}\)
\(h(x) = x(2x+3)^{1/4}\)
Using the product rule,
\(h'(x) = x \dfrac{d}{dx}(2x+3)^{1/4} + (2x+3)^{1/4}\)
\(= \dfrac{x}{4}(2x+3)^{-3/4}2 + (2x+3)^{1/4}\)
\(= \dfrac{x}{2\sqrt[4]{(2x+3)^3}} + \sqrt[4]{(2x+3)}\)
1.10 Solution 10
\(f(x) = x^2\sqrt[3]{3x-5}\)
\(f(x) = x^2(3x-5)^{1/3}\)
Using the product rule,
\(f'(x) = x^2\dfrac{d}{dx}(3x-5)^{1/3} + 2x(3x-5)^{1/3}\)
\(= x^2\dfrac{1}{3}(3x-5)^{-2/3} + 2x(3x-5)^{1/3}\)
\(= \dfrac{x^2}{3\sqrt[3]{(3x-5)^2}} + 2x\sqrt[3]{3x-5}\)
1.11 Solution 11
\(g(x) = \sin (\cos (\tan (3x)))\)
\(g'(x) = \cos (\cos (\tan (3x))) \dfrac{d}{dx} (\cos (\tan 3x))\)
\(= \cos (\cos (\tan 3x)) * - \sin (\tan 3x) \dfrac{d}{dx} (\tan 3x)\)
\(= \cos (\cos (\tan 3x)) * -\sin (\tan 3x) \sec^2 3x 3\)
\(= -3 \sec^2 3x \sin(\tan 3x) \cos (\cos (\tan 3x))\)
1.12 Solution 12
\(h(x) = \sqrt{5 + 4\sqrt{3 + 2\sqrt{1+x}}}\)
\(h(x) = (5 + 4\sqrt{3 + 2\sqrt{1+x}})^{1/2}\)
\(h'(x) = \dfrac{1}{2}(5 + 4\sqrt{3 + 2\sqrt{1+x}})^{-1/2} \dfrac{d}{dx}(4\sqrt{3 + 2\sqrt{1+x}})\)
\(= \dfrac{1}{2}(5+ 4\sqrt{3 + 2\sqrt{1+x}})^{-1/2} . 4(3+2\sqrt{1+2})^{-1/2} \dfrac{d}{dx} (2\sqrt{1+x})\)
\(= 2(5+ 4\sqrt{3 + 2\sqrt{1+x}})^{-1/2} 4\sqrt{3 + 2\sqrt{1+x}} 2(1+x)^{-1/2}\)
\(= \dfrac{4}{\sqrt{(5 + 4 \sqrt{3+2\sqrt{1+x}})}(\sqrt{3 + 2\sqrt{1+x}})\sqrt{1+x}}\)
1.13 Solution 13
\(f(x) = (\dfrac{2x+5}{2-5x})^7\)
\(f(x) = (2x+5)^2(2-5x)^{-7}\)
Using the product rule,
\(f'(x) = (2x+5)^7\dfrac{d}{dx}(2-5x)^{-7} + (2-5x)^{-7} \dfrac{d}{dx} (2x+5)^7\)
\(= (2x+5)^7.-7(2-5x)^{-8}(-5) + (2-5x)^{-7}.7(2x+5)^6.2\)
\(= \dfrac{35(2x+5)^7}{(2-5x)^8} + \dfrac{14(2x+5)^6}{(2-5x)^7}\)
1.14 Solution 14
\(g(x) = \dfrac{\cos 5x}{\sin 3x}\)
\(g(x) = \cos 5x \csc 3x\)
Using the product rule,
\(g'(x) = \cos 5x \dfrac{d}{dx} \csc (3x) + \csc (3x) \dfrac{d}{dx} (\cos 5x)\)
\(= \cos 5x - \csc 3x \cot 3x . 3 + \csc 3x (-\sin 5x) . 5\)
\(= -3\cos 5x \csc 3x - \cot 3x - 5\sin 5x \csc 3x\)
1.15 Solution 15
\(f(x) = \sqrt{\tan x}\)
\(f'(x) = \dfrac{1}{2} (\tan x)^{-1/2} \sec^2 x\)
\(= \dfrac{\sec^2 x}{2 \sqrt{\tan x}}\)
1.16 Solution 16
\(g(x) = \sqrt{\dfrac{x^2 - 1}{x^2 + 1}}\)
\(g(x) = (x^2 - 1)^{1/2}(x^2 + 1)^{-1/2}\)
Using the product rule,
\(g'(x) = (x^2-1)^{1/2}\dfrac{d}{dx}(x^2+1)^{-1/2}+(x^2+1)^{-1/2}\dfrac{d}{dx}(x^2-1)^{1/2}\)
\(= \dfrac{-1}{2}(x^2-1)^{1/2}(x^2+1)^{-3/2}(2x) + \dfrac{1}{2}(x^2+1)^{-1/2}(x^2-1)^{-1/2}(2x)\)
\(= \dfrac{-x\sqrt{x^2-1}}{(x^2+1)^{3/2}} + \dfrac{x}{\sqrt{(x^2+1)(x^2-2)}}\)
1.17 Solution 17
\(g(x) = f(x^2-3x+1)\)
\(f'(x)=3\)
\(f''(1) = -1\)
Let \(h=x^2-3x+1\)
\(g(x) = f \circ h\)
Using chain rule,
\(g'(x) = f'(h(x))h'(x)\)
\(h'(x) = 2x- 3\)
\(g'(3) = f'(f(3))h'(3)\)
\(h(3) = 3^2 - 3^2 + 1 = 1\)
\(h'(3) = 3.2 - 3 = 3\)
\(g'(3) = f'(1)h'(3)\)
\(= 3.3 = 9\)
We know that,
\(g'(x) = f'(h(x))h'(x)\)
Using the product rule,
\(g''(x) = f'(h(x))h''(x) + h'(x)\dfrac{d}{dx}(f'(h(x)))\)
\(= f'(h(x))h''(x) + h'(x)f''(h(x))h'(x)\)
\(= f'(h(x))h''(x) + (h'(x))^2f''(h(x))\)
\(g''(3) = f'(h(3))h''(3) + (h'(3))^2f''(h(3))\)
\(h(3) = 1\)
\(h'(3) = 3\)
\(h''(x) = 2\)
\(g''(3) = f'(1).2 + 3^2 f''(1)\)
\(= 2f'(1)+9f''(1)\)
\(=2.3 + 9(-1)\)
\(= 6 - 9 = -3\)
1.18 Solution 18
\(y = 5x - 3\) is tangent to \(y=f(x)\) at \((3,12)\)
\(g(x) = \dfrac{f(x^2-1)}{x}\)
We need to find tangent for \(y=g(x)\) at \((2,g(x))\)
\(g(2) = \dfrac{f(4-1)}{3} = \dfrac{f(3)}{2}\)
We know that \(f(3) = 12\)
\(g(2) = \dfrac{12}{2} = 6\)
So we need to find tangent to \(y=g(x)\) at \((2,6\))
\(g(x) = \dfrac{f(x^2-1)}{2}\)
\(g'(x) = \dfrac{1}{2} \dfrac{d}{dx}f(x^2-1)\)
\(= \dfrac{1}{2}f'(x^2-1)(2x)\)
\(= xf'(x^2-1)\)
\(g'(2) = 2f'(3) = 2.12 = 24\)
So we have the following data about the tangent:
It's point: (2.6)
It's slope = 24
\(y = mx + c\)
\(6 = 24.2 + c\)
\(c = 6 - 48 = -42\)
\(y = 24x - 42\)
1.19 Solution 19
\(f(x) = (3x-2)^7\)
\(f'(x) = 7(3x-2)^6(3)\)
\(= 21(3x-2)^6\)
\(f''(x) = 126(3x-2)^5\)
\(= 378(3x-2)^5\)
\(f'''(x) = 378.5(3x-2)^4\)
\(= 1890(3x-2)^4\)
1.20 Solution 20
\(g(x) = \sec(3x + 1)\)
\(g'(x) = \sec(3x + 1) \tan(3x+1).e\)
\(g''(x) = 3\sec(3x+1)\dfrac{d}{dx}\tan(3x+1) + 3\tan(3x+1)\dfrac{d}{dx}\sec(3x+1)\)
\(= 3\sec(3x+1)\sec^2(3x+1).3 + 3\tan(3x+1)\sec(3x+1)\tan(3x+1).3\)
\(= 9\sec^3(3x + 1) + 9\tan^2(3x+1)\sec(3x + 1)\)
\(g'''(x) = 27\sec^2(3x+1).3 + 9\tan^2(3x+1)\dfrac{d}{dx}\sec(3x+1) + 9\sec(3x+1)\dfrac{d}{dx}\tan^2(3x+1)\)
\(= 27\sec^2(3x+1) + 9\tan^2(3x+1)\sec(3x+1)\tan(3x+1).3 + 9\sec(3x+1).2\tan(3x+1).3\sec^2(3x+1)\)
\(= 27\sec^2(3x+1) + 27\tan^3(3x+1)\sec(3x+1) + 54\sec^3(3x+1)\tan(3x+1)\)
1.21 Solution 21
\(h(x) = \sin(2x)\)
\(h'(x) = \cos(2x).2 = 2\cos (2x)\)
\(h''(x) = -4\sin(2x)\)
\(h'''(x) = -8\cos(2x)\)
\(h''''(x) = 16\sin(2x)\)
So looking at the pattern, when we do differentiate 100th time,
\(h^{(100)}x = 2^{100}\sin(2x)\)
1.22 Solution 22
\(y = \sin(\pi t^2)\)
Velocity = \(\dfrac{dy}{dt} = \cos (\pi t^2).2t\pi\)
\(= 2t\pi\cos(\pi t^2)\)
Acceleration = \(\dfrac{d^2y}{dt^2} = 2t\pi \dfrac{d}{dt} (\cos \pi t^2) + (\cos \pi t^2 \dfrac{d}{dt} (2t\pi))\)
\(= -2\pi t\sin(\pi t^2)2\pi t + \pi t^2 (2\pi)\)
\(= -4\pi^2t^2 \sin(\pi t^2) + 2\pi^2 t^2\)
\(= 2\pi^2 t^2 - 4\pi^2t^2\sin(\pi t^2)\)
At \(t=1\),
Velocity = \(2\pi(cos \pi) = -2\pi\)
Acceleration = \(2\pi^2 - 4\pi^2\sin(\pi)\)
\(= 2\pi^2 - 0 = 2\pi^2\)
1.23 Solution 23
\(\forall x \sin(2x) = 2\sin x \cos x\)
\(2 \cos 2x = 2 \sin \dfrac{d}{dx}\cos x + 2 \cos x \dfrac{d}{dx} \sin x\)
\(2\cos 2x = -2\sin x \sin x + 2\cos x \cos x\)
\(2\cos 2x = -2\sin^2 x + 2\cos^2 x\)
\(\cos 2x = \cos^2x - \sin^2 x\)
1.24 Solution 24
\(f(x) = x^{m/n}\)
\(m\) and \(n\) are positive integers.
\(m > n \geq 3\)
\(n\) is odd.
\(m/n\) is reduced to lowest terms
\(y = x^{m/n}\)
\(y^n = x^m\)
Differentiating above w.r.t x,
\(\dfrac{d}{dx}y^n = mx^{m-1}\)
\(ny^{n-1}\dfrac{dy}{dx} = mx^{m-1}\)
\(\dfrac{dy}{dx} = \dfrac{m(x^{m-1})}{ny^{n-1}}\)
\(= \dfrac{mx^{m-1}}{n(x^{m/n})^{n-1}}\)
\(= \dfrac{m}{n}x^{m-1-\dfrac{m(n-1)}{n}}\)
\(= \dfrac{m}{n}x^{\dfrac{m}{n}-1}\)
Now since \(m/n > 1\), we know that \(m/n - 1 > 0\).
So when \(x=0\), the derivative is defined.
\(f'(0) = \dfrac{m}{n} 0^{m/n} = 0\)