UP | HOME

1 Derivative Rules

1.1 Solution 1

\(f(x) = 2x^6 - 3x^4 + x^3 - 7x^2 + 4x-8\)

\(f'(x) = 12 - 12x^3 + 3x^2 - 14x + 4\)

1.2 Solution 2

\(g(x) = \dfrac{x^4}{2} - \dfrac{2x^3}{5} + x - 5\)

\(g'(x) = \dfrac{4x^3}{2} - \dfrac{6x^2}{5} + 1\)

\(= x^3 - \dfrac{6x^2}{5} + 1\)

1.3 Solution 3

\(f(x) = \dfrac{x^2+3x-5}{3x^2-5x+1}\)

Using the quotient rule,

\(f'(x) = \dfrac{(3x^2-5x+1)(2x+3)-(x^2+3x-5)(6x-5)}{(3x^2-5x+1)^2}\)

\(= \dfrac{6x^3+9x^2-10x^2-15x+2x+3-(6x^3-5x^2+18x^2-15x-30x+25)}{(3x^2-5x+1)^2}\)

\(= \dfrac{32x-14x^2-22}{(3x^2-5x+1)^2}\)

1.4 Solution 4

Using the product rule,

\(h'(x) = (x^3-4x)(3x^2-4) + (x^3-4x)(3x^2-4)\)

\(= 2(x^3-4x)(3x^2-4)\)

1.5 Solution 5

\(g(x) = \dfrac{2x+3}{x^3+2}\)

\(g'(x) = \dfrac{(x^3+2)(2)-(2x+3)(3x^2)}{(x^3+2)^2}\)

\(= \dfrac{2x^3+4-(6x^3+9x^2)}{(x^3+2)^2}\)

\(= \dfrac{4-9x^2-4x^3}{(x^3+2)^2}\)

1.6 Solution 6

\(f(x) = x^5 + 3\sqrt[5]{x}\)

\(f(x) = x^5 + 3(x)^{1/5}\)

\(f'(x) = 5x^4 + 3(1/5)x^{1/5 - 1}\)

\(= 5x^4 + \dfrac{3}{5}x^{-4/5}\)

1.7 Solution 7

\(g(x) = \dfrac{4x-1}{x^2 + \sqrt{x}}\)

Using the quotient rule,

\(g'(x) = \dfrac{(x^2+\sqrt{x})(4)-(4x-1)(2x+\dfrac{1}{2\sqrt{x}})}{(x^2 + \sqrt{x})^2}\)

\(= \dfrac{4x^2+4\sqrt{x}-(8x^2+2\sqrt{x}-2x-\dfrac{1}{2\sqrt{x}})}{(x^2 + \sqrt{x})^2}\)

\(= \dfrac{-4x^2+2\sqrt{x}+2x + \dfrac{1}{2\sqrt{x}}}{(x^2 + \sqrt{x})^2}\)

1.8 Solution 8

\(h(x) = \dfrac{3 + \dfrac{2}{x-1}}{x+1}\)

Using the quotient rule,

\(h'(x) = \dfrac{(x+1)\dfrac{d}{dx}(\dfrac{2}{x-1}) - (3 + \dfrac{2}{x-1})}{(x+1)^2}\)

\(\dfrac{d}{dx} (\dfrac{2}{x-1}) = \dfrac{(x-1).0 - 2.1}{(x-1)^2}\)

\(= \dfrac{-2}{(x-1)^2}\)

\(h'(x) = \dfrac{\dfrac{(x+1)(-2)}{(x-1)^2} - \dfrac{3(x-1)+2}{x-1}}{(x+1)^2}\)

\(= \dfrac{\dfrac{(x+1)(-2)}{(x-1)^2} - \dfrac{3x-1}{x-1}}{(x+1)^2}\)

\(= \dfrac{\dfrac{(x+1)(-2)-(3x-1)(x-1)}{(x-1)^2}}{(x+1)^2}\)

\(= \dfrac{(x+1)(-2)-(3x-1)(x-1)}{(x-1)^2(x+1)^2}\)

1.9 Solution 9

\(f(x) = \dfrac{\sqrt{x}-1}{\sqrt[3]{x}+1}\)

Using the quotient rule,

\(f'(x) = \dfrac{(\sqrt[3]{x}+1)(\dfrac{1}{x\sqrt{x}}) - (\sqrt{x}-1)(\dfrac{1}{3} - x^{-2/3})}{(\sqrt[3]{x} + 1)^2}\)

\(= \dfrac{\dfrac{\sqrt[3]{x}+1}{2\sqrt{x}} - \dfrac{\sqrt{x}-1}{3x^{2/3}}}{(\sqrt[3]{x} + 1)^2}\)

\(= \dfrac{3x^{2/3}x^{1/3}+3x^{2/3}-2x+2x^{1/2}}{6x^{1/2}x^{2/3}(\sqrt[3]{x} + 1)^2}\)

\(= \dfrac{3x^{1/6}x^{1/3}+3x^{1/6}-2x^{1/2}+2}{6x^{2/3}(\sqrt[3]{x}+1)^2}\)

\(= \dfrac{3\sqrt{x} + 3x^{1/6} - 2\sqrt{x} + 2}{6\sqrt[3]{x^2}(\sqrt[3]{x} + 1)^2}\)

\(= \dfrac{\sqrt{x} + 3\sqrt[6]{x} + 2}{6\sqrt[3]{x^2}(\sqrt[3]{x} + 1)^2}\)

1.10 Solution 10

\(h(x) = x^{7/3}\)

\(x^{7/3} = x^{2 + 1/3}\)

\(= x^2 . x^{1/3}\)

\(= x^2 . \sqrt[3]{x}\)

\(h(x) = x^2 \sqrt[3]{x}\)

Using the product rule,

\(h'(x) = x^2\dfrac{1}{3}x^{1/3 - 1} + \sqrt[3]{x}2x\)

\(= \dfrac{1}{3}x^2x^{-2/3} + 2x^{1/2}x^{1/3}\)

\(= \dfrac{1}{3}x^{4/3} + 2x^{5/6}\)

1.11 Solution 11

\(h(x) = x^{2/3}\)

\(x^{2/3} = (x^2)^{1/3} = (x^{1/3})^2 = \sqrt[3]{x}\sqrt[3]{x}\)

Using the product rule,

\(h'(x) = \sqrt[3]{x}\dfrac{1}{3}x^{-2/3} + \sqrt[3]{x}\dfrac{1}{3}x^{-2/3}\)

\(= \dfrac{2}{3}x^{1/3}x^{-2/3}\)

\(= \dfrac{2}{3}x^{-1/3}\)

\(= \dfrac{2}{3x^{1/3}}\)

\(= \dfrac{2}{3\sqrt[3]{x}}\)

1.12 Solution 12

\(f(x) = \sin x \cos x\)

Using the product rule,

\(f'(x) = \sin x (- \sin x) + \cos x \cos x\)

\(= -\sin^2 x + \cos^2 x\)

\(= \cos^2 x - \sin^2 x\)

1.13 Solution 13

\(f(x) = \sqrt{x} \sin x \cos x\)

We will use product rule and also the result from solution 12,

\(f'(x) = \sqrt{x}(\cos^2 x - \sin^2 x) + (\sin x \cos x \dfrac{1}{2}x^{-1/2})\)

\(= \sqrt{x}(\cos^2 x - \sin^2 x) + \dfrac{\sin x \cos x}{2\sqrt{x}}\)

\(= \dfrac{2x(\cos^2 x - \sin^2 x) + \sin x \cos x}{2\sqrt{x}}\)

1.14 Solution 14

\(g(x) = x^2 \tan x\)

Using the product rule,

\(g'(x) = x^2 \sec^2 x + \tan x (2x)\)

\(= x^2 \sec^2 x + 2x\tan x\)

1.15 Solution 15

\(h(x) = \dfrac{x}{\sec x + \tan x}\)

Using the quotient rule,

\(h'(x) = \dfrac{(\sec x + \tan x)-x(\sec x \tan x + \sec^2 x)}{(\sec x + \tan x)^2}\)

\((\sec x + \tan x)-x(\sec x \tan x + \sec^2 x)\)

\(= \sec x + \tan x - x \sec x \tan x - x \sec^2 x\)

\(= \dfrac{1}{\cos x} + \dfrac{\sin x}{\cos x} - \dfrac{x \sin x}{\cos^2 x} - \dfrac{x}{\cos^2 x}\)

\(= \dfrac{\cos x}{\cos^2 x} + \dfrac{\sin x \cos x}{\cos^2 x} - \dfrac{x\sin x}{\cos^2 x} - \dfrac{x}{\cos^2 x}\)

\(= \dfrac{(\cos x + \sin x \cos x - x \sin x - x)}{\cos^2 x}\)

\((\sec x + \tan x)^2 = (\dfrac{1}{\cos x} + \dfrac{\sin x}{\cos x})^2\)

\(= (\dfrac{1+\sin x}{\cos x})^2\)

\(= \dfrac{(1+\sin x)^2}{\cos^2 x}\)

\(h'(x) = \dfrac{\cos x + \sin x \cos x - x \sin x - x}{(1 + \sin x)^2}\)

\(= \dfrac{\cos x (1 + \sin x) - x (\sin x + 1)}{(1 + \sin x)^2}\)

\(= \dfrac{\cos x - x}{1 + \sin x}\)

1.16 Solution 16

\(f(x) = \dfrac{\sin x}{\cos x + \sec x}\)

Using the quotient rule,

\(f'(x) - \dfrac{(\cos x + \sec x)(\cos x)-(\sin x)(-\sin x + \sec x \tan x)}{(\cos x + \sec x)^2}\)

\(= \dfrac{(\cos^2 x + 1)-(-\sin^2 x + \tan^2 x)}{(\cos x + \sec x)^2}\)

\(= \dfrac{\cos^2 + 1 + \sin^2 x - \tan^2 x}{(\cos x + \sec x)^2}\)

\(= \dfrac{2-\tan^2 x}{(\cos x + \sec x)^2}\)

1.17 Solution 17

\(y = 3x - \dfrac{2}{x}\)

\(f(x) = 3x - \dfrac{2}{x}\)

We know that \(f'(a)\) is the rate of change of \(f(x)\) with respect to \(x\) at \(x=a\) which is also the slope of the line tangent to the graph of \(f\) at the point \((a, f(a))\).

\(f'(x) = 3 - (-1).2.x^{-2}\)

\(= 3 + \dfrac{2}{x^2}\)

Slope at \((2,5) = 3 + \dfrac{2}{2^2} = 3 + \dfrac{1}{2} = \dfrac{7}{2}\)

Equation of line: \(y = mx + c\)

\(y = \dfrac{7}{2}{x} + c\)

\(5 = \dfrac{7.2}{2} + c\)

\(c = -2\)

\(y = \dfrac{7x}{2} - 2\)

1.18 Solution 18

Equation of the curve: \(y = x^2\)

\(f(x) = x^2\)

\(f'(x) = 2x\)

We know that \(f'(a)\) is the rate of change of \(f(x)\) with respect to \(x\) at \(x=a\) which is also the slope of the line tangent to the graph of \(f\) at the point \((a,f(a))\)

Let point \(P = (x_1, y_1)\) and \(Q = (x_2, y_2)\)

So, \(P = (x_1, x_1^2)\)

\(Q = (x_2, x_2^2)\)

We know that the line tangent to the curve at \(P\) and \(Q\) passes through \((3,5)\).

Slope at \(P = \dfrac{5-x_1^2}{3-x_1}\)

We also know that \(f'(x) = 2x\)

\(f'(x_1) = 2x_1\)

\(2x_1 = \dfrac{5-x_1^2}{3-x_1}\)

\(6x_1 - 2x_1^2 = 5 - x_1^2\)

\(6x_1 = 5 + x_1^2\)

\(5 + x_1^2 = 6x_1\)

\(x_1^2 - 6x_1 + 5 = 0\)

\(x_1^2 - 5x_1 - x_1 + 5 = 0\)

\(x_1(x_1 - 5) - 1(x_1 - 5) = 0\)

\((x_1 - 5)(x_1 - 1) = 0\)

\(x_1 = 5\) or \(x_1 = 1\)

So, \(P = (5, 25)\)

\(Q = (1,1)\)

1.19 Solution 19

\(y = \dfrac{1}{x}\)

The tangent to the above curve at point \(P\) passes through \((4,0)\).

\(f(x) = \dfrac{1}{x}\)

\(f'(x) = -1x^{-1-1} = \dfrac{-1}{x^2}\)

Let point \(P = (x_1, y_1)\)

\(P = (x_1, \dfrac{1}{x_1})\)

\(m = \dfrac{0 - \dfrac{1}{x_1}}{4 - x_1}\)

\(= \dfrac{0-1}{x_1(4-x_1)} = \dfrac{-1}{x_1(4-x_1)}\)

\(\dfrac{-1}{x_1^2} = \dfrac{-1}{x_1(4-x_1)}\)

\(\dfrac{1}{x_1} = \dfrac{1}{4-x_1}\)

\(x_1 = 4 - x_1\)

\(2x_1 = 4\)

\(x_1 = 2\)

\(y_1 = \dfrac{1}{2}\)

So the point \(P\) is \((2,\dfrac{1}{2})\)

1.20 Solution 20

Observer \(= (0,0)\)

Initial rocket position \(= (10, 0)\)

Equation of the hill \(y = -x^2 + 10x - 16\)

Domain of the above equation \([2,8]\)

Let's assume that the rocket is at point \(P\) when the observer first sees it.

Let \(P = (10, y_1)\)

The tangent of the equation of hill passes through \((0,0)\) and \((10,y_1)\).

Let \(Q\) be the point in the curve such that it's tangent passes through \((0,0)\) and \((10, y_1)\).

\(Q = (x_2, y_2)\)

\(f(x) = -x^2 + 10x -16\)

\(f'(x) = -2x + 10\)

At \(Q\), \(f'(x_2) = -2x_2 + 10\)

Also from the equation of the hill,

\(-y_2 = -x_2^2 + 10x_2 - 16\)

Also, \(m = \dfrac{y_2 - 0}{x_2 - 0} = \dfrac{y_2}{x_2}\)

So, \(\dfrac{y_2}{x_2} = -2x_2 + 10\)

\(y_2 = -2x_2^2 + 10x_2\)

From the previous equation,

\(-2x_2^2 + 10x_2 = -x_2^2 + 10x_2 - 16\)

\(16 = x_2^2\)

\(x_2 = 4\)

\(f(x) = -x^2 + 10x - 16\)

\(f(4) = -(4)^2 + 40 - 16\)

\(= -16 + 40 - 16 = 40 - 32 = 8\)

So, \(Q = (4,8)\)

\(m = \dfrac{y_2}{x_2} = \dfrac{8}{4} = 2\)

Now let's find \(P\)

\(m = \dfrac{y_1 - 0}{10 - 0}\)

\(2 = \dfrac{y_1}{10}\)

\(y_1 = 20\)

So, \(P = (10, 20)\)

1.21 Solution 22

Hill one: \(y = 16-x^2\)

Domain: \([-4,4]\)

Hill two: \(y = -x^2 + 12x - 32\)

Domain: \([4,8]\)

Let the two points touch the hills are \(P\) and \(Q\).

$P = (x1,y1)$and \(Q=(x_2,y_2)\)

Point \(P\) is a tangent to hill one and point \(Q\) is a tangent to hill two.

\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(f(x) = 16 - x^2\)

\(f'(x) = -2x\)

\(g(x) = -x^2 + 12x - 32\)

\(g'(x) = -2x + 12\)

\(m = f'(x_1) = -2x_1\)

\(-2x_1 = \dfrac{y_2-y_1}{x_2-x_1}\)

\(-2x_1x_2 + 2x_1^2 = y_2 - y_1\) (Equation 1)

\(m = g'(x_2) = -2x_2 + 12\)

\(-2x_2 + 12 = \dfrac{y_2 - y_1}{x_2 - x_1}\) (Equation 2)

\(m = -2x_1\)

\(m = -2x_2 + 12\)

\(x_2 - x_1 = 6\)

From 1, \(y_2 - y_1 = -12x_1\)

From 2, \(-2x_2 + 12 = \dfrac{-12x_1}{6} = -2x_1\)

\(y_1 = 16 - x_1^2\)

\(y_2 = -x_2^2 + 12x_2 - 32\)

\(y_2 - y_1 = -x_2^2 + 12x_2 - 32 - 16 + x_1^2\)

\(= x_1^2 - x_2^2 + 12x_2 - 48\)

\(= (x_1 - x_2)(x_1 + x_2) + 12x_2 - 48\)

\(= -6(x_1 + x_2) + 12x_2 - 48\)

\(= 6x_2 - 6x_1 - 48\)

\(y_2 - y_1 = 6x_2 - 6x_1 - 48\)

\(= 6y(6) - 48 = 36 - 48 = -12\)

\(m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{-12}{6}\)

\(= -2\)

\(m = -2x_1 = -2\)

\(x_2 - x_1 = 6\)

\(x_2 - 1 = 6\)

\(x_2 = 7\)

\(y = 16-x_1^2 - 16 - 1 = 15\)

\(y_2 = -x_2^2 + 12x_2 - 32\)

\(-(7)^2 + 12.7 - 32\)

\(-49 + 8 - 32 = 3\)

\(y_2 = 3\)

\(y_1 = 15\)

\(y = mx + c\)

\(15 = -2.1 + c\)

\(c = 17\)

\(y = mx + c\)

\(y = -2x + 17\)

1.22 Solution 22

Hill one: \(y = 17 - x^2\)

Domain: \([-\sqrt{17}, \sqrt{17}]\)

Hill two: \(y = -2x^2 + 26x - 80\)

Domain: \([5,8]\)

Let the two points of the borads touch the hills are \(P\) and \(Q\).

\(P = (x_1, y_1)\)

\(Q = (x_2, y_2)\)

Point \(P\) is a tangent on hill one and point \(Q\) is a point on the tangent of hill two.

\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(f(x) = 17 - x^2\)

\(f'(x) = -2x\)

\(g(x) = -2x^2 + 26x - 80\)

\(g'(x) = -4x + 26\)

\(m = f'(x_1) = -2x_1\)

\(m = g'(x_2) = -4x_2 + 26\)

\(-2x_1 = -4x_2 + 26\)

\(4x_2 - 2x_1 = 26\)

\(2x_2 - x_1 = 13\)

Also, \(y_1 = 17 - x_1^2\)

\(y_2 = -2x_1^2 + 26x_2 - 80\)

\(-2x_1 = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(-2x_1x_2 + 2x_1^2 = y_2 - y_1\)

\(2x_1(x_1 - x_2) = y_2 - y_1\)

\(y_2 - y_1 = 2x_1(2x_1 - x_2 -x_1)\)

\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(m = \dfrac{-2x_1(13-x_2)}{x_2-x_1}\)

\(y_2 - y_1 = -2x_2^2 + 26x_2 - 80 - 17 + x_1^2\)

\(y_2 - y_1 = x_1^2 - 2x_2^2 + 26x_2 - 97\)

\(2x_1(x_1 - x_2) = x_1^2 - 2x_2^2 + 26x_2 - 97\)

\(2x_1^2 - 2x_1x_2 = x_1^2 - 2x_2^2 + 26x_2 - 97\)

\(x_1^2 - 2x_1x_2 = -2x_2^2 + 26x_2 - 97\)

\(x_1^2 + 2x_2^2 - 2x_1x_2 + 26x_2 + 97 = 0\)

Let's try the other equation:

\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(-4x_2 + 26 = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(-4x_2 + 26(x_2 - x_1) = y_2 - y_1\)

\(-4x_2^2 + 4x_1x_2 + 26x_2 - 26x_1 = y_2 - y_1\)

\(-4x_2^2 + 4x_1x_2 + 26x_2 - 26x_1 = x_1^2 - 2x_2^2 + 26x_2 - 97\)

\(-2x_2^2 + 4x_1x_2 - 26x_1 = x_1^2 - 97\)

\(2x_1(2x_1 - x_2) -x_1^2 - 26x_1 = -97\)

\(2x_1(2x_1 - x_2) - x_1(x_1 + 26) = -97\)

\(2x_2 - x_1 = 13\)

\(x_2 - x_1 = 13 - x_1\)

\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)

\(-2x_1 = \dfrac{y_2 - y_1}{13 - x_1}\)

\(-26x_1 + 2x_1^2 = y_2 - y_1\)

\(y_2 - y_1 = 2x_1^2 - 26x_1\)

\(m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{2x_1^2 - 26x_1}{13 - x_1}\)

\(-2x_1 = \dfrac{2x_1^2 - 26x_1}{13 - x_1}\)

\(2x_1^2 - 26x_1 = x_1^2 - 2x_2^2 + 26x_2 - 97\)

\(x_1^2 - 26x_1 = -2x_2^2 + 26x_2 - 97\)

\(x_1^2 + 2x_2^2 = 26x_1 + 26x_2 - 97\)

\(x_1^2 + x_2^2 + x_2^2 = 26(x_1 + x_2) - 97\)

\(x_1 = 2x_2 - 13\)

\((2x_2 - 13)^2 + 2x_2^2 = 26(2x_2 + x_2 - 13) - 97\)

\(4x_2^2 + 13^2 + 2x_2^2 - 52x_2 = 26(3x_2 - 13) - 97\)

\(6x_2^2 + 13^2 - 52x_2 = 78x_2 - 97 - 338\)

\(6x_2^2 + 169 - 52x_2 = 78x_2 - 435\)

\(6x_2^2 - 130x_2 + 604 = 0\)

\(3x_2^2 - 65x_2 + 302 = 0\)

Solving it we get \(x_2 = \dfrac{64 \pm \sqrt{601}}{6}\)

Since \(x_2\) is on hill two where domain is \([5,8]\)

So, \(x_2 = \dfrac{65 - \sqrt{601}}{6}\)

From \(2x_2 - x_1 = 13\)

\(x_1 = 2x_2 - 13\)

\(x_1 = \dfrac{65 - \sqrt{601}}{3} - 13\)

\(x_1 = \dfrac{65 - \sqrt{601}}{3} - \dfrac{39}{3}\)

\(= \dfrac{26 - \sqrt{601}}{3}\)

From \(y_1 = 17-x_1^2\)

\(y_1 = 17 - \dfrac{(26 - \sqrt{601})^2}{9}\)

\(= \dfrac{153}{9} - \dfrac{676 + 601 - 52\sqrt{601}}{9}\)

\(= \dfrac{52\sqrt{601} - 1124}{9}\)

\(m = -2x_1 = \dfrac{2\sqrt{601}-52}{3}\)

\(y_1 = mx_1 + c\)

\(\dfrac{52\sqrt{601} - 1124}{9} - \dfrac{(2\sqrt{601} - 52)(26 - \sqrt{601})}{9} + c\)

\(c = \dfrac{52\sqrt{601} - 1124 - (52\sqrt{601} - 1202 - 1352 + 52\sqrt{601})}{9}\)

\(= \dfrac{-1124 + 1202 + 1352 - 52\sqrt{601}}{9}\)

\(= \dfrac{1130 - 52\sqrt{601}}{9}\)

\(y = mx + c\)

\(y = \dfrac{x(2\sqrt{601}-52)}{3} + \dfrac{1130 - 52\sqrt{601}}{9}\)

\(y = \dfrac{x(6\sqrt{601}-156)}{3} + \dfrac{1130 - 52\sqrt{601}}{9}\)

\(9y = (6\sqrt{601}-156)x + 1130 - 52\sqrt{601}\)

1.23 Solution 23

\(f(x) = (x^2 + 3)(2x-5)\)

Method 1:

By using product rule,

\(f'(x) = (x^2 + 3)(2) + (2x-5)(2x)\)

\(2x^2 + 6 + 4x^2 - 10x\)

\(= 6x^2 - 10x + 6\)

Method 2:

\(f(x) = (x^2 + 3)(2x -5)\)

\(= 2x^2 - 5x^2 + 6x - 15\)

\(f'(x) = 6x - 10x + 6\)

1.24 Solution 24

\(a^4 - b^4\)

1.24.1 Solution a

\((a-b)? = a^4 - b^4\)

\(a^4 - b^4 = (a^2 + b^2)(a^2 - b^2)\)

\(= (a^2 + b^2)(a+b)(a-b)\)

\(= (a^3 + a^2b + ab^2 + b^3)(a-b)\)

1.24.2 Solution b

\(f(x) = \sqrt[4]{x}\)

\(f'(x) = \lim_{h \to 0} \dfrac{f(x+h) - f(x)}{h}\)

\(= \lim_{h \to 0} \dfrac{\sqrt[4]{x+h} - \sqrt[4]{x}}{h}\)

From \((a)\), let \(a = \sqrt[4]{x+h}\) and \(b = \sqrt[4]{x}\)

\((x+h)-h = ((\sqrt[4]{x+h})^3 + (\sqrt[4]{x+h})^2\sqrt[4]{x} + \sqrt[4]{x+h}\sqrt{x} + x^{3/4})(\sqrt[4]{x+h} - \sqrt[4]{x})\)

\(f'(x) = \lim_{h \to 0} \dfrac{\sqrt[4]{x+h} - \sqrt[4]{x}}{h} * \dfrac{((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})}{((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})}\)

\(\lim_{h \to 0} \dfrac{h}{h(((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4}))}\)

\(\lim_{h \to 0} \dfrac{1}{((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})}\)

Let's take the limit of the denomiator in the last fraction, we get:

\(\lim_{h \to 0} ((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})\)

\(= x^{3/4} + x^{1/2}x^{1/4} + x^{1/4}x^{1/2} + x^{3/4}\)

\(= 2x^{3/4} + 2x^{1/2}x^{1/4}\)

\(= 2x^{3/4} + 2x^{3/4}\)

\(= 4x^{3/4}\)

Thus as long as \(x \neq 0\), we have

\(f'(x) = \dfrac{1}{4(\sqrt[4]{x})^2}\)

1.24.3 Solution c

\(n \geq 2\)

\((a^n - b^n) = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + .... + ab^{n-2} + b^{n-2})\)

\(a = \sqrt[n]{x+h}\)

\(b = \sqrt[n]{x}\)

\(f'(x) = \lim_{h \to 0} \dfrac{\sqrt[n]{x+h} - \sqrt[n]{x}}{h} * \dfrac{((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}}{((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}}\)

\(f'(x) = \lim_{h \to 0} \dfrac{h}{h(((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1})}\)

\(f'(x) = \lim_{h \to 0} \dfrac{1}{((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}}\)

Let's take the limit of the denominator in the last fraction, we get:

\(\lim_{h \to 0} ((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}\)

Let \(\sqrt[n]{x} = c\)

\(= c^{n-1} + c^{n-2}.c + c^{n-3}.c^2 + ... + c.c^{n-2} + c^{n-1}\)

\(= c^{n-1} + c^{n-1} + c^{n-1} + ... c^{n-1} + c^{n-1}\)

\(= nc^{n-1}\)

\(= n(\sqrt[n]{x})^{n-1}\)

\(f'(x) = \dfrac{1}{n(\sqrt[n]{x})^{n-1}} = \dfrac{(\sqrt[n]{x})^{1-n}}{n}\)

\(= \dfrac{1}{n}x^{1/n - 1}\)

1.25 Solution 25

1.25.1 Solution a

\(\dfrac{d}{dx} \sec x = \sec x \tan x\)

\(\dfrac{d}{dx} \sec x = \dfrac{d}{dx} (\dfrac{1}{\cos x})\)

Using the quotient rule,

\(\dfrac{d}{dx}(\dfrac{1}{\cos x}) = \dfrac{\cos x 0 - 1(-\sin x)}{(\cos x)^2}\)

\(= 0 + \dfrac{\sin x}{(\cos x)^2} = \dfrac{\tan x}{\cos x} = \sec x \tan x\)

1.25.2 Solution b

\(\dfrac{d}{dx} \cot x = -\csc^2 x\)

\(\dfrac{d}{dx} \cot x = \dfrac{d}{dx} \dfrac{\cos x}{\sin x}\)

Using the quotient rule,

\(\dfrac{d}{dt} \dfrac{\cos x}{\sin x} = \dfrac{\sin x (-\sin x) - \cos x(\cos x)}{(\sin x)^2}\)

\(= \dfrac{-\sin^2x - \cos^2 x}{\sin^2 x}\)

\(= \dfrac{-1(\sin^2 x + \cos^2 x)}{\sin^2 x}\)

\(= \dfrac{-1}{\sin^2 x} = -\csc^2 x\)

1.25.3 Solution c

\(\dfrac{d}{dx}(\csc x) = -\csc x \cot x\)

\(\dfrac{d}{dx} (\csc x) = \dfrac{d}{dx} (\dfrac{1}{\sin x})\)

Using the quotient rule,

\(\dfrac{d}{dx} (dfrac{1}{\sin x}) = \dfrac{\sin x.0 - 1\cos x}{(\sin x)^2}\)

\(= \dfrac{-\cos x}{\sin^2 x}\)

\(= \dfrac{-\cot x}{\sin x}\)

\(= -\csc x \cot x\)

1.26 Solution 26

\(f\) is differentiable on \((-\infty, \infty)\)

1.26.1 Solution a

\(\dfrac{d}{dx} ((f(x))^2) = 2f(x)f'(x)\)

Let \(g(x) = (f(x))^2\)

We need to prove \(g'(x) = 2f(x)f'(x)\)

\(g'(x) = \lim_{h \to 0} \dfrac{g(x+h) - g(x)}{h}\)

\(= \lim_{h \to 0} \dfrac{f(x+h)^2 - f(x)^2}{h}\)

\(= \lim_{h \to 0} \dfrac{(f(x+h)-f(x))(f(x+h)+f(x))}{h}\)

\(= \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} * \lim_{h \to 0} \dfrac{f(x+h)+f(x)}{1}\)

\(= f'(x)(f(x) + f(x))\)

\(= 2f(x)f'(x)\)

1.26.2 Solution b

\(\dfrac{d}{dx} ((f(x))^3)\)

Let \(g(x) = (f(x))^3\)

\(g'(x) = \lim_{h \to 0} \dfrac{g(x+h)-g(x)}{h}\)

\(= \lim_{h \to 0} \dfrac{f(x+h)^3 - f(x)^3}{h}\)

We know that \(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\)

\(= \lim_{h \to 0} \dfrac{(f(x+h) - f(x))(f(x+h)^2 + f(x+h)f(x) + f(x)^2)}{h}\)

\(= \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} * \lim_{h \to 0} f(x+h)^2 + f(x+h)f(x) + f(x)^2\)

\(= f'(x)(f(x)^2 + f(x)f(x) + f(x)^2)\)

\(= 3f(x)^2f'(x)\)

1.26.3 Solution c

Conjecture: \(\dfrac{d}{dx} ((f(x))^n) = nf(x)^{n-1}f'(x)\)

We will prove using mathematical induction.

Base case: \(n = 1\)

\(\dfrac{d}{dx} f(x) = 1(f(x))^0f'(x) = f'(x)\)

Induction step: Suppose \(n\) is a positive integer and \(\dfrac{d}{dx} ((f(x))^n) = nf(x)^{n-1}f'(x)\)

\(\dfrac{d}{dx} (f(x))^{n+1} = \dfrac{d}{dx} f(x)f(x)^n\)

Using the product rule,

\(= f(x)\dfrac{d}{dx}(f(x))^n + f(x)^n \dfrac{d}{dx} f(x)\)

\(= f(x)nf(x)^{n-1}f'(x) + f(x)^nf'(x)\)

\(= f(x)^n . n . f'(x) + f(x)^nf'(x)\)

\(= f(x)^nf'(x)(n+1)\)

This completes the mathematical induction proof.

1.27 Solution 27

\(\dfrac{d}{dx} f(x)g(x)h(x)\)

Using the product rule,

\(= f(x)\dfrac{d}{dx}g(x)h(x) + g(x)h(x)f'(x)\)

\(= f(x)(g(x)h'(x) + h(x)g'(x)) + g(x)h(x)f'(x)\)

\(= f(x)g(x)h'(x) + f(x)h(x)g'(x) + g(x)h(x)f'(x)\)