1 Derivative Rules
1.1 Solution 1
\(f(x) = 2x^6 - 3x^4 + x^3 - 7x^2 + 4x-8\)
\(f'(x) = 12 - 12x^3 + 3x^2 - 14x + 4\)
1.2 Solution 2
\(g(x) = \dfrac{x^4}{2} - \dfrac{2x^3}{5} + x - 5\)
\(g'(x) = \dfrac{4x^3}{2} - \dfrac{6x^2}{5} + 1\)
\(= x^3 - \dfrac{6x^2}{5} + 1\)
1.3 Solution 3
\(f(x) = \dfrac{x^2+3x-5}{3x^2-5x+1}\)
Using the quotient rule,
\(f'(x) = \dfrac{(3x^2-5x+1)(2x+3)-(x^2+3x-5)(6x-5)}{(3x^2-5x+1)^2}\)
\(= \dfrac{6x^3+9x^2-10x^2-15x+2x+3-(6x^3-5x^2+18x^2-15x-30x+25)}{(3x^2-5x+1)^2}\)
\(= \dfrac{32x-14x^2-22}{(3x^2-5x+1)^2}\)
1.4 Solution 4
Using the product rule,
\(h'(x) = (x^3-4x)(3x^2-4) + (x^3-4x)(3x^2-4)\)
\(= 2(x^3-4x)(3x^2-4)\)
1.5 Solution 5
\(g(x) = \dfrac{2x+3}{x^3+2}\)
\(g'(x) = \dfrac{(x^3+2)(2)-(2x+3)(3x^2)}{(x^3+2)^2}\)
\(= \dfrac{2x^3+4-(6x^3+9x^2)}{(x^3+2)^2}\)
\(= \dfrac{4-9x^2-4x^3}{(x^3+2)^2}\)
1.6 Solution 6
\(f(x) = x^5 + 3\sqrt[5]{x}\)
\(f(x) = x^5 + 3(x)^{1/5}\)
\(f'(x) = 5x^4 + 3(1/5)x^{1/5 - 1}\)
\(= 5x^4 + \dfrac{3}{5}x^{-4/5}\)
1.7 Solution 7
\(g(x) = \dfrac{4x-1}{x^2 + \sqrt{x}}\)
Using the quotient rule,
\(g'(x) = \dfrac{(x^2+\sqrt{x})(4)-(4x-1)(2x+\dfrac{1}{2\sqrt{x}})}{(x^2 + \sqrt{x})^2}\)
\(= \dfrac{4x^2+4\sqrt{x}-(8x^2+2\sqrt{x}-2x-\dfrac{1}{2\sqrt{x}})}{(x^2 + \sqrt{x})^2}\)
\(= \dfrac{-4x^2+2\sqrt{x}+2x + \dfrac{1}{2\sqrt{x}}}{(x^2 + \sqrt{x})^2}\)
1.8 Solution 8
\(h(x) = \dfrac{3 + \dfrac{2}{x-1}}{x+1}\)
Using the quotient rule,
\(h'(x) = \dfrac{(x+1)\dfrac{d}{dx}(\dfrac{2}{x-1}) - (3 + \dfrac{2}{x-1})}{(x+1)^2}\)
\(\dfrac{d}{dx} (\dfrac{2}{x-1}) = \dfrac{(x-1).0 - 2.1}{(x-1)^2}\)
\(= \dfrac{-2}{(x-1)^2}\)
\(h'(x) = \dfrac{\dfrac{(x+1)(-2)}{(x-1)^2} - \dfrac{3(x-1)+2}{x-1}}{(x+1)^2}\)
\(= \dfrac{\dfrac{(x+1)(-2)}{(x-1)^2} - \dfrac{3x-1}{x-1}}{(x+1)^2}\)
\(= \dfrac{\dfrac{(x+1)(-2)-(3x-1)(x-1)}{(x-1)^2}}{(x+1)^2}\)
\(= \dfrac{(x+1)(-2)-(3x-1)(x-1)}{(x-1)^2(x+1)^2}\)
1.9 Solution 9
\(f(x) = \dfrac{\sqrt{x}-1}{\sqrt[3]{x}+1}\)
Using the quotient rule,
\(f'(x) = \dfrac{(\sqrt[3]{x}+1)(\dfrac{1}{x\sqrt{x}}) - (\sqrt{x}-1)(\dfrac{1}{3} - x^{-2/3})}{(\sqrt[3]{x} + 1)^2}\)
\(= \dfrac{\dfrac{\sqrt[3]{x}+1}{2\sqrt{x}} - \dfrac{\sqrt{x}-1}{3x^{2/3}}}{(\sqrt[3]{x} + 1)^2}\)
\(= \dfrac{3x^{2/3}x^{1/3}+3x^{2/3}-2x+2x^{1/2}}{6x^{1/2}x^{2/3}(\sqrt[3]{x} + 1)^2}\)
\(= \dfrac{3x^{1/6}x^{1/3}+3x^{1/6}-2x^{1/2}+2}{6x^{2/3}(\sqrt[3]{x}+1)^2}\)
\(= \dfrac{3\sqrt{x} + 3x^{1/6} - 2\sqrt{x} + 2}{6\sqrt[3]{x^2}(\sqrt[3]{x} + 1)^2}\)
\(= \dfrac{\sqrt{x} + 3\sqrt[6]{x} + 2}{6\sqrt[3]{x^2}(\sqrt[3]{x} + 1)^2}\)
1.10 Solution 10
\(h(x) = x^{7/3}\)
\(x^{7/3} = x^{2 + 1/3}\)
\(= x^2 . x^{1/3}\)
\(= x^2 . \sqrt[3]{x}\)
\(h(x) = x^2 \sqrt[3]{x}\)
Using the product rule,
\(h'(x) = x^2\dfrac{1}{3}x^{1/3 - 1} + \sqrt[3]{x}2x\)
\(= \dfrac{1}{3}x^2x^{-2/3} + 2x^{1/2}x^{1/3}\)
\(= \dfrac{1}{3}x^{4/3} + 2x^{5/6}\)
1.11 Solution 11
\(h(x) = x^{2/3}\)
\(x^{2/3} = (x^2)^{1/3} = (x^{1/3})^2 = \sqrt[3]{x}\sqrt[3]{x}\)
Using the product rule,
\(h'(x) = \sqrt[3]{x}\dfrac{1}{3}x^{-2/3} + \sqrt[3]{x}\dfrac{1}{3}x^{-2/3}\)
\(= \dfrac{2}{3}x^{1/3}x^{-2/3}\)
\(= \dfrac{2}{3}x^{-1/3}\)
\(= \dfrac{2}{3x^{1/3}}\)
\(= \dfrac{2}{3\sqrt[3]{x}}\)
1.12 Solution 12
\(f(x) = \sin x \cos x\)
Using the product rule,
\(f'(x) = \sin x (- \sin x) + \cos x \cos x\)
\(= -\sin^2 x + \cos^2 x\)
\(= \cos^2 x - \sin^2 x\)
1.13 Solution 13
\(f(x) = \sqrt{x} \sin x \cos x\)
We will use product rule and also the result from solution 12,
\(f'(x) = \sqrt{x}(\cos^2 x - \sin^2 x) + (\sin x \cos x \dfrac{1}{2}x^{-1/2})\)
\(= \sqrt{x}(\cos^2 x - \sin^2 x) + \dfrac{\sin x \cos x}{2\sqrt{x}}\)
\(= \dfrac{2x(\cos^2 x - \sin^2 x) + \sin x \cos x}{2\sqrt{x}}\)
1.14 Solution 14
\(g(x) = x^2 \tan x\)
Using the product rule,
\(g'(x) = x^2 \sec^2 x + \tan x (2x)\)
\(= x^2 \sec^2 x + 2x\tan x\)
1.15 Solution 15
\(h(x) = \dfrac{x}{\sec x + \tan x}\)
Using the quotient rule,
\(h'(x) = \dfrac{(\sec x + \tan x)-x(\sec x \tan x + \sec^2 x)}{(\sec x + \tan x)^2}\)
\((\sec x + \tan x)-x(\sec x \tan x + \sec^2 x)\)
\(= \sec x + \tan x - x \sec x \tan x - x \sec^2 x\)
\(= \dfrac{1}{\cos x} + \dfrac{\sin x}{\cos x} - \dfrac{x \sin x}{\cos^2 x} - \dfrac{x}{\cos^2 x}\)
\(= \dfrac{\cos x}{\cos^2 x} + \dfrac{\sin x \cos x}{\cos^2 x} - \dfrac{x\sin x}{\cos^2 x} - \dfrac{x}{\cos^2 x}\)
\(= \dfrac{(\cos x + \sin x \cos x - x \sin x - x)}{\cos^2 x}\)
\((\sec x + \tan x)^2 = (\dfrac{1}{\cos x} + \dfrac{\sin x}{\cos x})^2\)
\(= (\dfrac{1+\sin x}{\cos x})^2\)
\(= \dfrac{(1+\sin x)^2}{\cos^2 x}\)
\(h'(x) = \dfrac{\cos x + \sin x \cos x - x \sin x - x}{(1 + \sin x)^2}\)
\(= \dfrac{\cos x (1 + \sin x) - x (\sin x + 1)}{(1 + \sin x)^2}\)
\(= \dfrac{\cos x - x}{1 + \sin x}\)
1.16 Solution 16
\(f(x) = \dfrac{\sin x}{\cos x + \sec x}\)
Using the quotient rule,
\(f'(x) - \dfrac{(\cos x + \sec x)(\cos x)-(\sin x)(-\sin x + \sec x \tan x)}{(\cos x + \sec x)^2}\)
\(= \dfrac{(\cos^2 x + 1)-(-\sin^2 x + \tan^2 x)}{(\cos x + \sec x)^2}\)
\(= \dfrac{\cos^2 + 1 + \sin^2 x - \tan^2 x}{(\cos x + \sec x)^2}\)
\(= \dfrac{2-\tan^2 x}{(\cos x + \sec x)^2}\)
1.17 Solution 17
\(y = 3x - \dfrac{2}{x}\)
\(f(x) = 3x - \dfrac{2}{x}\)
We know that \(f'(a)\) is the rate of change of \(f(x)\) with respect to \(x\) at \(x=a\) which is also the slope of the line tangent to the graph of \(f\) at the point \((a, f(a))\).
\(f'(x) = 3 - (-1).2.x^{-2}\)
\(= 3 + \dfrac{2}{x^2}\)
Slope at \((2,5) = 3 + \dfrac{2}{2^2} = 3 + \dfrac{1}{2} = \dfrac{7}{2}\)
Equation of line: \(y = mx + c\)
\(y = \dfrac{7}{2}{x} + c\)
\(5 = \dfrac{7.2}{2} + c\)
\(c = -2\)
\(y = \dfrac{7x}{2} - 2\)
1.18 Solution 18
Equation of the curve: \(y = x^2\)
\(f(x) = x^2\)
\(f'(x) = 2x\)
We know that \(f'(a)\) is the rate of change of \(f(x)\) with respect to \(x\) at \(x=a\) which is also the slope of the line tangent to the graph of \(f\) at the point \((a,f(a))\)
Let point \(P = (x_1, y_1)\) and \(Q = (x_2, y_2)\)
So, \(P = (x_1, x_1^2)\)
\(Q = (x_2, x_2^2)\)
We know that the line tangent to the curve at \(P\) and \(Q\) passes through \((3,5)\).
Slope at \(P = \dfrac{5-x_1^2}{3-x_1}\)
We also know that \(f'(x) = 2x\)
\(f'(x_1) = 2x_1\)
\(2x_1 = \dfrac{5-x_1^2}{3-x_1}\)
\(6x_1 - 2x_1^2 = 5 - x_1^2\)
\(6x_1 = 5 + x_1^2\)
\(5 + x_1^2 = 6x_1\)
\(x_1^2 - 6x_1 + 5 = 0\)
\(x_1^2 - 5x_1 - x_1 + 5 = 0\)
\(x_1(x_1 - 5) - 1(x_1 - 5) = 0\)
\((x_1 - 5)(x_1 - 1) = 0\)
\(x_1 = 5\) or \(x_1 = 1\)
So, \(P = (5, 25)\)
\(Q = (1,1)\)
1.19 Solution 19
\(y = \dfrac{1}{x}\)
The tangent to the above curve at point \(P\) passes through \((4,0)\).
\(f(x) = \dfrac{1}{x}\)
\(f'(x) = -1x^{-1-1} = \dfrac{-1}{x^2}\)
Let point \(P = (x_1, y_1)\)
\(P = (x_1, \dfrac{1}{x_1})\)
\(m = \dfrac{0 - \dfrac{1}{x_1}}{4 - x_1}\)
\(= \dfrac{0-1}{x_1(4-x_1)} = \dfrac{-1}{x_1(4-x_1)}\)
\(\dfrac{-1}{x_1^2} = \dfrac{-1}{x_1(4-x_1)}\)
\(\dfrac{1}{x_1} = \dfrac{1}{4-x_1}\)
\(x_1 = 4 - x_1\)
\(2x_1 = 4\)
\(x_1 = 2\)
\(y_1 = \dfrac{1}{2}\)
So the point \(P\) is \((2,\dfrac{1}{2})\)
1.20 Solution 20
Observer \(= (0,0)\)
Initial rocket position \(= (10, 0)\)
Equation of the hill \(y = -x^2 + 10x - 16\)
Domain of the above equation \([2,8]\)
Let's assume that the rocket is at point \(P\) when the observer first sees it.
Let \(P = (10, y_1)\)
The tangent of the equation of hill passes through \((0,0)\) and \((10,y_1)\).
Let \(Q\) be the point in the curve such that it's tangent passes through \((0,0)\) and \((10, y_1)\).
\(Q = (x_2, y_2)\)
\(f(x) = -x^2 + 10x -16\)
\(f'(x) = -2x + 10\)
At \(Q\), \(f'(x_2) = -2x_2 + 10\)
Also from the equation of the hill,
\(-y_2 = -x_2^2 + 10x_2 - 16\)
Also, \(m = \dfrac{y_2 - 0}{x_2 - 0} = \dfrac{y_2}{x_2}\)
So, \(\dfrac{y_2}{x_2} = -2x_2 + 10\)
\(y_2 = -2x_2^2 + 10x_2\)
From the previous equation,
\(-2x_2^2 + 10x_2 = -x_2^2 + 10x_2 - 16\)
\(16 = x_2^2\)
\(x_2 = 4\)
\(f(x) = -x^2 + 10x - 16\)
\(f(4) = -(4)^2 + 40 - 16\)
\(= -16 + 40 - 16 = 40 - 32 = 8\)
So, \(Q = (4,8)\)
\(m = \dfrac{y_2}{x_2} = \dfrac{8}{4} = 2\)
Now let's find \(P\)
\(m = \dfrac{y_1 - 0}{10 - 0}\)
\(2 = \dfrac{y_1}{10}\)
\(y_1 = 20\)
So, \(P = (10, 20)\)
1.21 Solution 22
Hill one: \(y = 16-x^2\)
Domain: \([-4,4]\)
Hill two: \(y = -x^2 + 12x - 32\)
Domain: \([4,8]\)
Let the two points touch the hills are \(P\) and \(Q\).
$P = (x1,y1)$and \(Q=(x_2,y_2)\)
Point \(P\) is a tangent to hill one and point \(Q\) is a tangent to hill two.
\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(f(x) = 16 - x^2\)
\(f'(x) = -2x\)
\(g(x) = -x^2 + 12x - 32\)
\(g'(x) = -2x + 12\)
\(m = f'(x_1) = -2x_1\)
\(-2x_1 = \dfrac{y_2-y_1}{x_2-x_1}\)
\(-2x_1x_2 + 2x_1^2 = y_2 - y_1\) (Equation 1)
\(m = g'(x_2) = -2x_2 + 12\)
\(-2x_2 + 12 = \dfrac{y_2 - y_1}{x_2 - x_1}\) (Equation 2)
\(m = -2x_1\)
\(m = -2x_2 + 12\)
\(x_2 - x_1 = 6\)
From 1, \(y_2 - y_1 = -12x_1\)
From 2, \(-2x_2 + 12 = \dfrac{-12x_1}{6} = -2x_1\)
\(y_1 = 16 - x_1^2\)
\(y_2 = -x_2^2 + 12x_2 - 32\)
\(y_2 - y_1 = -x_2^2 + 12x_2 - 32 - 16 + x_1^2\)
\(= x_1^2 - x_2^2 + 12x_2 - 48\)
\(= (x_1 - x_2)(x_1 + x_2) + 12x_2 - 48\)
\(= -6(x_1 + x_2) + 12x_2 - 48\)
\(= 6x_2 - 6x_1 - 48\)
\(y_2 - y_1 = 6x_2 - 6x_1 - 48\)
\(= 6y(6) - 48 = 36 - 48 = -12\)
\(m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{-12}{6}\)
\(= -2\)
\(m = -2x_1 = -2\)
\(x_2 - x_1 = 6\)
\(x_2 - 1 = 6\)
\(x_2 = 7\)
\(y = 16-x_1^2 - 16 - 1 = 15\)
\(y_2 = -x_2^2 + 12x_2 - 32\)
\(-(7)^2 + 12.7 - 32\)
\(-49 + 8 - 32 = 3\)
\(y_2 = 3\)
\(y_1 = 15\)
\(y = mx + c\)
\(15 = -2.1 + c\)
\(c = 17\)
\(y = mx + c\)
\(y = -2x + 17\)
1.22 Solution 22
Hill one: \(y = 17 - x^2\)
Domain: \([-\sqrt{17}, \sqrt{17}]\)
Hill two: \(y = -2x^2 + 26x - 80\)
Domain: \([5,8]\)
Let the two points of the borads touch the hills are \(P\) and \(Q\).
\(P = (x_1, y_1)\)
\(Q = (x_2, y_2)\)
Point \(P\) is a tangent on hill one and point \(Q\) is a point on the tangent of hill two.
\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(f(x) = 17 - x^2\)
\(f'(x) = -2x\)
\(g(x) = -2x^2 + 26x - 80\)
\(g'(x) = -4x + 26\)
\(m = f'(x_1) = -2x_1\)
\(m = g'(x_2) = -4x_2 + 26\)
\(-2x_1 = -4x_2 + 26\)
\(4x_2 - 2x_1 = 26\)
\(2x_2 - x_1 = 13\)
Also, \(y_1 = 17 - x_1^2\)
\(y_2 = -2x_1^2 + 26x_2 - 80\)
\(-2x_1 = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(-2x_1x_2 + 2x_1^2 = y_2 - y_1\)
\(2x_1(x_1 - x_2) = y_2 - y_1\)
\(y_2 - y_1 = 2x_1(2x_1 - x_2 -x_1)\)
\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(m = \dfrac{-2x_1(13-x_2)}{x_2-x_1}\)
\(y_2 - y_1 = -2x_2^2 + 26x_2 - 80 - 17 + x_1^2\)
\(y_2 - y_1 = x_1^2 - 2x_2^2 + 26x_2 - 97\)
\(2x_1(x_1 - x_2) = x_1^2 - 2x_2^2 + 26x_2 - 97\)
\(2x_1^2 - 2x_1x_2 = x_1^2 - 2x_2^2 + 26x_2 - 97\)
\(x_1^2 - 2x_1x_2 = -2x_2^2 + 26x_2 - 97\)
\(x_1^2 + 2x_2^2 - 2x_1x_2 + 26x_2 + 97 = 0\)
Let's try the other equation:
\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(-4x_2 + 26 = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(-4x_2 + 26(x_2 - x_1) = y_2 - y_1\)
\(-4x_2^2 + 4x_1x_2 + 26x_2 - 26x_1 = y_2 - y_1\)
\(-4x_2^2 + 4x_1x_2 + 26x_2 - 26x_1 = x_1^2 - 2x_2^2 + 26x_2 - 97\)
\(-2x_2^2 + 4x_1x_2 - 26x_1 = x_1^2 - 97\)
\(2x_1(2x_1 - x_2) -x_1^2 - 26x_1 = -97\)
\(2x_1(2x_1 - x_2) - x_1(x_1 + 26) = -97\)
\(2x_2 - x_1 = 13\)
\(x_2 - x_1 = 13 - x_1\)
\(m = \dfrac{y_2 - y_1}{x_2 - x_1}\)
\(-2x_1 = \dfrac{y_2 - y_1}{13 - x_1}\)
\(-26x_1 + 2x_1^2 = y_2 - y_1\)
\(y_2 - y_1 = 2x_1^2 - 26x_1\)
\(m = \dfrac{y_2 - y_1}{x_2 - x_1} = \dfrac{2x_1^2 - 26x_1}{13 - x_1}\)
\(-2x_1 = \dfrac{2x_1^2 - 26x_1}{13 - x_1}\)
\(2x_1^2 - 26x_1 = x_1^2 - 2x_2^2 + 26x_2 - 97\)
\(x_1^2 - 26x_1 = -2x_2^2 + 26x_2 - 97\)
\(x_1^2 + 2x_2^2 = 26x_1 + 26x_2 - 97\)
\(x_1^2 + x_2^2 + x_2^2 = 26(x_1 + x_2) - 97\)
\(x_1 = 2x_2 - 13\)
\((2x_2 - 13)^2 + 2x_2^2 = 26(2x_2 + x_2 - 13) - 97\)
\(4x_2^2 + 13^2 + 2x_2^2 - 52x_2 = 26(3x_2 - 13) - 97\)
\(6x_2^2 + 13^2 - 52x_2 = 78x_2 - 97 - 338\)
\(6x_2^2 + 169 - 52x_2 = 78x_2 - 435\)
\(6x_2^2 - 130x_2 + 604 = 0\)
\(3x_2^2 - 65x_2 + 302 = 0\)
Solving it we get \(x_2 = \dfrac{64 \pm \sqrt{601}}{6}\)
Since \(x_2\) is on hill two where domain is \([5,8]\)
So, \(x_2 = \dfrac{65 - \sqrt{601}}{6}\)
From \(2x_2 - x_1 = 13\)
\(x_1 = 2x_2 - 13\)
\(x_1 = \dfrac{65 - \sqrt{601}}{3} - 13\)
\(x_1 = \dfrac{65 - \sqrt{601}}{3} - \dfrac{39}{3}\)
\(= \dfrac{26 - \sqrt{601}}{3}\)
From \(y_1 = 17-x_1^2\)
\(y_1 = 17 - \dfrac{(26 - \sqrt{601})^2}{9}\)
\(= \dfrac{153}{9} - \dfrac{676 + 601 - 52\sqrt{601}}{9}\)
\(= \dfrac{52\sqrt{601} - 1124}{9}\)
\(m = -2x_1 = \dfrac{2\sqrt{601}-52}{3}\)
\(y_1 = mx_1 + c\)
\(\dfrac{52\sqrt{601} - 1124}{9} - \dfrac{(2\sqrt{601} - 52)(26 - \sqrt{601})}{9} + c\)
\(c = \dfrac{52\sqrt{601} - 1124 - (52\sqrt{601} - 1202 - 1352 + 52\sqrt{601})}{9}\)
\(= \dfrac{-1124 + 1202 + 1352 - 52\sqrt{601}}{9}\)
\(= \dfrac{1130 - 52\sqrt{601}}{9}\)
\(y = mx + c\)
\(y = \dfrac{x(2\sqrt{601}-52)}{3} + \dfrac{1130 - 52\sqrt{601}}{9}\)
\(y = \dfrac{x(6\sqrt{601}-156)}{3} + \dfrac{1130 - 52\sqrt{601}}{9}\)
\(9y = (6\sqrt{601}-156)x + 1130 - 52\sqrt{601}\)
1.23 Solution 23
\(f(x) = (x^2 + 3)(2x-5)\)
Method 1:
By using product rule,
\(f'(x) = (x^2 + 3)(2) + (2x-5)(2x)\)
\(2x^2 + 6 + 4x^2 - 10x\)
\(= 6x^2 - 10x + 6\)
Method 2:
\(f(x) = (x^2 + 3)(2x -5)\)
\(= 2x^2 - 5x^2 + 6x - 15\)
\(f'(x) = 6x - 10x + 6\)
1.24 Solution 24
\(a^4 - b^4\)
1.24.1 Solution a
\((a-b)? = a^4 - b^4\)
\(a^4 - b^4 = (a^2 + b^2)(a^2 - b^2)\)
\(= (a^2 + b^2)(a+b)(a-b)\)
\(= (a^3 + a^2b + ab^2 + b^3)(a-b)\)
1.24.2 Solution b
\(f(x) = \sqrt[4]{x}\)
\(f'(x) = \lim_{h \to 0} \dfrac{f(x+h) - f(x)}{h}\)
\(= \lim_{h \to 0} \dfrac{\sqrt[4]{x+h} - \sqrt[4]{x}}{h}\)
From \((a)\), let \(a = \sqrt[4]{x+h}\) and \(b = \sqrt[4]{x}\)
\((x+h)-h = ((\sqrt[4]{x+h})^3 + (\sqrt[4]{x+h})^2\sqrt[4]{x} + \sqrt[4]{x+h}\sqrt{x} + x^{3/4})(\sqrt[4]{x+h} - \sqrt[4]{x})\)
\(f'(x) = \lim_{h \to 0} \dfrac{\sqrt[4]{x+h} - \sqrt[4]{x}}{h} * \dfrac{((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})}{((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})}\)
\(\lim_{h \to 0} \dfrac{h}{h(((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4}))}\)
\(\lim_{h \to 0} \dfrac{1}{((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})}\)
Let's take the limit of the denomiator in the last fraction, we get:
\(\lim_{h \to 0} ((x+h)^{3/4} + (x+h)^{1/2}\sqrt[4]{x} + \sqrt[4]{x+h} + \sqrt{x} + x^{3/4})\)
\(= x^{3/4} + x^{1/2}x^{1/4} + x^{1/4}x^{1/2} + x^{3/4}\)
\(= 2x^{3/4} + 2x^{1/2}x^{1/4}\)
\(= 2x^{3/4} + 2x^{3/4}\)
\(= 4x^{3/4}\)
Thus as long as \(x \neq 0\), we have
\(f'(x) = \dfrac{1}{4(\sqrt[4]{x})^2}\)
1.24.3 Solution c
\(n \geq 2\)
\((a^n - b^n) = (a-b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + .... + ab^{n-2} + b^{n-2})\)
\(a = \sqrt[n]{x+h}\)
\(b = \sqrt[n]{x}\)
\(f'(x) = \lim_{h \to 0} \dfrac{\sqrt[n]{x+h} - \sqrt[n]{x}}{h} * \dfrac{((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}}{((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}}\)
\(f'(x) = \lim_{h \to 0} \dfrac{h}{h(((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1})}\)
\(f'(x) = \lim_{h \to 0} \dfrac{1}{((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}}\)
Let's take the limit of the denominator in the last fraction, we get:
\(\lim_{h \to 0} ((\sqrt[n]{x+h})^{n-1} + (\sqrt[n]{x+h})^{n-2}\sqrt[n]{x} + .... \sqrt[n]{x+h}(\sqrt[n]{x})^{n-2}) + (\sqrt[n]{x})^{n-1}\)
Let \(\sqrt[n]{x} = c\)
\(= c^{n-1} + c^{n-2}.c + c^{n-3}.c^2 + ... + c.c^{n-2} + c^{n-1}\)
\(= c^{n-1} + c^{n-1} + c^{n-1} + ... c^{n-1} + c^{n-1}\)
\(= nc^{n-1}\)
\(= n(\sqrt[n]{x})^{n-1}\)
\(f'(x) = \dfrac{1}{n(\sqrt[n]{x})^{n-1}} = \dfrac{(\sqrt[n]{x})^{1-n}}{n}\)
\(= \dfrac{1}{n}x^{1/n - 1}\)
1.25 Solution 25
1.25.1 Solution a
\(\dfrac{d}{dx} \sec x = \sec x \tan x\)
\(\dfrac{d}{dx} \sec x = \dfrac{d}{dx} (\dfrac{1}{\cos x})\)
Using the quotient rule,
\(\dfrac{d}{dx}(\dfrac{1}{\cos x}) = \dfrac{\cos x 0 - 1(-\sin x)}{(\cos x)^2}\)
\(= 0 + \dfrac{\sin x}{(\cos x)^2} = \dfrac{\tan x}{\cos x} = \sec x \tan x\)
1.25.2 Solution b
\(\dfrac{d}{dx} \cot x = -\csc^2 x\)
\(\dfrac{d}{dx} \cot x = \dfrac{d}{dx} \dfrac{\cos x}{\sin x}\)
Using the quotient rule,
\(\dfrac{d}{dt} \dfrac{\cos x}{\sin x} = \dfrac{\sin x (-\sin x) - \cos x(\cos x)}{(\sin x)^2}\)
\(= \dfrac{-\sin^2x - \cos^2 x}{\sin^2 x}\)
\(= \dfrac{-1(\sin^2 x + \cos^2 x)}{\sin^2 x}\)
\(= \dfrac{-1}{\sin^2 x} = -\csc^2 x\)
1.25.3 Solution c
\(\dfrac{d}{dx}(\csc x) = -\csc x \cot x\)
\(\dfrac{d}{dx} (\csc x) = \dfrac{d}{dx} (\dfrac{1}{\sin x})\)
Using the quotient rule,
\(\dfrac{d}{dx} (dfrac{1}{\sin x}) = \dfrac{\sin x.0 - 1\cos x}{(\sin x)^2}\)
\(= \dfrac{-\cos x}{\sin^2 x}\)
\(= \dfrac{-\cot x}{\sin x}\)
\(= -\csc x \cot x\)
1.26 Solution 26
\(f\) is differentiable on \((-\infty, \infty)\)
1.26.1 Solution a
\(\dfrac{d}{dx} ((f(x))^2) = 2f(x)f'(x)\)
Let \(g(x) = (f(x))^2\)
We need to prove \(g'(x) = 2f(x)f'(x)\)
\(g'(x) = \lim_{h \to 0} \dfrac{g(x+h) - g(x)}{h}\)
\(= \lim_{h \to 0} \dfrac{f(x+h)^2 - f(x)^2}{h}\)
\(= \lim_{h \to 0} \dfrac{(f(x+h)-f(x))(f(x+h)+f(x))}{h}\)
\(= \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} * \lim_{h \to 0} \dfrac{f(x+h)+f(x)}{1}\)
\(= f'(x)(f(x) + f(x))\)
\(= 2f(x)f'(x)\)
1.26.2 Solution b
\(\dfrac{d}{dx} ((f(x))^3)\)
Let \(g(x) = (f(x))^3\)
\(g'(x) = \lim_{h \to 0} \dfrac{g(x+h)-g(x)}{h}\)
\(= \lim_{h \to 0} \dfrac{f(x+h)^3 - f(x)^3}{h}\)
We know that \(a^3 - b^3 = (a-b)(a^2 + ab + b^2)\)
\(= \lim_{h \to 0} \dfrac{(f(x+h) - f(x))(f(x+h)^2 + f(x+h)f(x) + f(x)^2)}{h}\)
\(= \lim_{h \to 0} \dfrac{f(x+h)-f(x)}{h} * \lim_{h \to 0} f(x+h)^2 + f(x+h)f(x) + f(x)^2\)
\(= f'(x)(f(x)^2 + f(x)f(x) + f(x)^2)\)
\(= 3f(x)^2f'(x)\)
1.26.3 Solution c
Conjecture: \(\dfrac{d}{dx} ((f(x))^n) = nf(x)^{n-1}f'(x)\)
We will prove using mathematical induction.
Base case: \(n = 1\)
\(\dfrac{d}{dx} f(x) = 1(f(x))^0f'(x) = f'(x)\)
Induction step: Suppose \(n\) is a positive integer and \(\dfrac{d}{dx} ((f(x))^n) = nf(x)^{n-1}f'(x)\)
\(\dfrac{d}{dx} (f(x))^{n+1} = \dfrac{d}{dx} f(x)f(x)^n\)
Using the product rule,
\(= f(x)\dfrac{d}{dx}(f(x))^n + f(x)^n \dfrac{d}{dx} f(x)\)
\(= f(x)nf(x)^{n-1}f'(x) + f(x)^nf'(x)\)
\(= f(x)^n . n . f'(x) + f(x)^nf'(x)\)
\(= f(x)^nf'(x)(n+1)\)
This completes the mathematical induction proof.
1.27 Solution 27
\(\dfrac{d}{dx} f(x)g(x)h(x)\)
Using the product rule,
\(= f(x)\dfrac{d}{dx}g(x)h(x) + g(x)h(x)f'(x)\)
\(= f(x)(g(x)h'(x) + h(x)g'(x)) + g(x)h(x)f'(x)\)
\(= f(x)g(x)h'(x) + f(x)h(x)g'(x) + g(x)h(x)f'(x)\)