1 What is Calculus About ?

2 Solution 1

\(s(t) = t^2 - 3\)

  • t is time in seconds
  • s(t) is position in meteres

2.1 Solution (a)

\(\dfrac{s(5) - s(2)}{5-2}\)

\(\dfrac{5^2 - 3 - (2^2 - 3)}{3}\)

2.2 Solution (b)

\(\dfrac{f(2+x) - f(2)}{2 + x - 2}\)

\(\dfrac{(2+x)^2 - 3 - (2^2 - 3)}{x}\)

\(x + 4\)

2.3 Solution (c)

Graph solution. Skipped as of now.

2.4 Solution (d)

From result in (c), we know that \(f(x) = x + 4\)

We need to find, \(\lim_{x \to 0}\) f(x)$

and the above limit value is \(4\).

3 Solution 2

\(s(t) = sin(\pi)\)

  • length = feet
  • time t = minutes

3.1 Solution (a)

Average velocity \(= \dfrac{s(3) - s(1)}{3 - 1}\)

\(= \dfrac{sin(3\pi) - sin(\pi)}{2}\)

\(= \dfrac{sin(\pi) - sin(\pi)}{2} = 0\)

3.2 Solution (b)

\(f(x) = \dfrac{s(1 + x) - s(1)}{1 + x - 1}\)

\(= \dfrac{sin(\pi(1 + x)) - sin(\pi)}{x}\)

3.3 Solution (c)

When \(x\) gets close to 0, \(sin(\pi(1 + x))\) becomes \(sin \pi\). This makes the numerator to zero. So, the velocity of the object at \(t = 1\) is zero.

4 Solution 3

\(\lim_{x \to 3} \dfrac{3 - x}{x^2 - x - 6}\)

\(= \lim_{x \to 3} \dfrac{3 - x}{x(x-1) - 6}\)

\(= \lim_{x \to 3} \dfrac{3 - x}{(x + 2)(x - 3)}\)

\(= \lim_{x \to 3} \dfrac{1}{(x + 2)(-1)}\)

\(= \dfrac{1}{5x - 1} = -1\dfrac{1}{5}\)

5 Solution 4

\(\lim_{x \to 1} \dfrac{(x + 2)^2 - 9}{(x + 1)^2 - 4}\)

\(= \lim_{x \to 1} \dfrac{(x + 2)^2 - 3^2}{(x + 1)^2 - 2^2}\)

\(= \lim_{x \to 1} \dfrac{(x + 2 - 3)(x + 2 + 3)}{(x + 1 - 2)(x + 1 + 2)}\)

\(= \lim_{x \to 1} \dfrac{(x - 1)(x + 5)}{(x - 1)(x + 3)}\)

\(= \lim_{x \to 1} \dfrac{x + 5}{x + 3}\)

\(= \dfrac{6}{4} = \dfrac{3}{2}\)

6 Solution 5

\(\lim_{x \to 0} \dfrac{\sqrt{x + 1} - 1}{x}\)

\(\lim_{x \to 0} \dfrac{(\sqrt{x + 1} - 1)(\sqrt{x + 1} + 1)}{x(\sqrt{x + 1} + 1)}\)

\(\lim_{x \to 0} \dfrac{x + 1 - 1}{x(\sqrt{x + 1} + 1)}\)

\(\lim_{x \to 0} \dfrac{1}{\sqrt{x + 1} + 1}\)

\(\dfrac{1}{\sqrt{1} + 1} = \dfrac{1}{2}\)

7 Solution 6

\(\lim_{x \to 0} \dfrac{\sqrt[3]{x + 1} - 1}{x}\)

\(\lim_{x \to 0} \dfrac{(\sqrt[3]{x + 1} - 1)((\sqrt[3]{x+1} + 1)^2 + (\sqrt[3]{x + 1} + 1) + 1{x})}{x((\sqrt[3]{x+1} + 1)^2 + (\sqrt[3]{x + 1} + 1) + 1{x})}\)

We know that a3 - b3 = (a - b)(a2 + ab + b2)

\(\dfrac{(x + 1) - 1}{x((\sqrt[3]{x+1} + 1)^2 + (\sqrt[3]{x + 1} + 1) + 1{x})}\)

Substituting \(x\) with 0, we get,

\dfrac{1}{1 + 1 + 1} = \dfrac{1}{3}

8 Solution 7

\(\lim_{x \to 64} \dfrac{\sqrt[3]{x} - 4}{\sqrt{x} - 8}\)

\(\lim_{x \to 64} \dfrac{(\sqrt[3]{x} - 4)((\sqrt[3]{x})^2 + 4^2 + 4.\sqrt{3}{x})}{(\sqrt{x} - 8)((\sqrt[3]{x})^2 + 4^2 + 4.\sqrt{3}{x})}\)

We know that a3 - b3 = (a - b)(a2 + ab + b2)

Simplifying it we get, \(\dfrac{\sqrt{x} + 8}{x^(2/3) + 16 + \sqrt[3]{x}.4}\)

Substituting \(x\) with 64, we get, \(\dfrac{16}{4^2 + 16 + 16}\) which gets simplified to \(\dfrac{1}{3}\)

9 Solution 8

\(\lim_{x \to 0} \dfrac{1}{x} + \dfrac{1}{x^2 - x}\)

\(\lim_{x \to 0} \dfrac{1}{x}(1 + \dfrac{1}{x - 1})\)

\(\lim_{x \to 0} \dfrac{1}{x}(\dfrac{x}{x - 1})\)

\(\lim_{x \to 0} \dfrac{1}{x - 1}\)

Substituting \(x\) with 0, we get \(-1\)

10 Solution 9

\(\lim_{x \to 2} \dfrac{1}{x - 2} (\dfrac{1}{x} - \dfrac{1}{2})\)

\(\lim_{x \to 2} \dfrac{1}{x - 2} (\dfrac{2 - x}{2x})\)

\(\lim_{x \to 2} \dfrac{1}{2x}\)

Substituting \(x\) with 2, we get \(4\)

11 Solution 10

\(\lim_{x \to \dfrac{\pi}{2}} \dfrac{sec x - tan x}{cos x}\)

\(\lim_{x \to \dfrac{\pi}{2}} \dfrac{(sec x - tan x)(sec x + tan x)}{cos x(sec x + tan x)}\)

\(\lim_{x \to \dfrac{\pi}{2}} \dfrac{(sec^2 x - tan^2 x)}{cos x(sec x + tan x)}\)

\(\lim_{x \to \dfrac{\pi}{2}} \dfrac{(sec^2 x - tan^2 x)}{cos x(sec x + tan x)}\)

\(\lim_{x \to \dfrac{\pi}{2}} \dfrac{1}{cos x(\dfrac{1}{cos x} + \dfrac{sin x}{cos x})}\)

\(\lim_{x \to \dfrac{\pi}{2}} \dfrac{1}{1 + sin x}\)

Substituting \(x\) with \(\dfrac{\pi}{2}\), we get \(\dfrac{1}{2}\)